Life cycle assessment of industry wastewater treatment plant: a case study in Vietnam

Hung Van Tran, Hao Anh Phan and Ha Manh Bui
{"title":"Life cycle assessment of industry wastewater treatment plant: a case study in Vietnam","authors":"Hung Van Tran, Hao Anh Phan and Ha Manh Bui","doi":"10.1039/D4SU00511B","DOIUrl":null,"url":null,"abstract":"<p >This study employs Life Cycle Assessment (LCA) to evaluate the environmental impacts of wastewater treatment systems in industrial zones of Vietnam. Focusing on two treatment technologies—Anoxic–Oxic (OA) and Sequencing Batch Reactor (SBR)—as well as different electricity production methods and sludge management strategies, the research aims to identify opportunities for enhancing sustainability and reducing environmental footprints. Utilizing the ReCiPe v1.13 method and SimaPro 9.6.0.1 software, the study assesses key impact categories: climate change, freshwater eutrophication, human toxicity and freshwater ecotoxicity. The results showed that the OA system resulted in 30% lower climate change impacts than the SBR system (0.61 <em>vs.</em> 0.87 kg<small><sub>CO<small><sub>2</sub></small> eq</sub></small>) but 24% higher freshwater eutrophication (6.17 × 10<small><sup>−4</sup></small><em>vs.</em> 4.69 × 10<small><sup>−4</sup></small> kg<small><sub>P eq</sub></small>). Utilizing electricity produced from natural gas resulted in an 8.4% reduction in climate change impacts compared to using electricity from the local grid (0.6 <em>vs.</em> 0.66 kg<small><sub>CO<small><sub>2</sub></small> eq</sub></small>) and an 81% reduction in freshwater ecotoxicity (1.29 × 10<small><sup>−3</sup></small><em>vs.</em> 2.18 × 10<small><sup>−5</sup></small> kg<small><sub>1,4-DB eq</sub></small>). Additionally, endpoint analysis of Scenario 0 highlights that the AAO biological and coagulation tanks are the main contributors to Human Health and Resource impacts, with respective scores of 13.8 mPt and 11.5 mPt, demonstrating areas for targeted improvement. The utilization of sewage sludge as fertilizer reduces the impact on climate change by 80% (0.036 <em>vs.</em> 0.3 kg<small><sub>CO<small><sub>2</sub></small> eq</sub></small>) and nearly eliminates freshwater eutrophication (5.01 × 10<small><sup>−6</sup></small><em>vs.</em> 1.77 × 10<small><sup>−4</sup></small> kg<small><sub>P eq</sub></small>) compared to landfill. These findings provide detailed insights into different treatment processes and resource utilization strategies, offering a robust framework for enhancing sustainability in developing countries.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1415-1423"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00511b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00511b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs Life Cycle Assessment (LCA) to evaluate the environmental impacts of wastewater treatment systems in industrial zones of Vietnam. Focusing on two treatment technologies—Anoxic–Oxic (OA) and Sequencing Batch Reactor (SBR)—as well as different electricity production methods and sludge management strategies, the research aims to identify opportunities for enhancing sustainability and reducing environmental footprints. Utilizing the ReCiPe v1.13 method and SimaPro 9.6.0.1 software, the study assesses key impact categories: climate change, freshwater eutrophication, human toxicity and freshwater ecotoxicity. The results showed that the OA system resulted in 30% lower climate change impacts than the SBR system (0.61 vs. 0.87 kgCO2 eq) but 24% higher freshwater eutrophication (6.17 × 10−4vs. 4.69 × 10−4 kgP eq). Utilizing electricity produced from natural gas resulted in an 8.4% reduction in climate change impacts compared to using electricity from the local grid (0.6 vs. 0.66 kgCO2 eq) and an 81% reduction in freshwater ecotoxicity (1.29 × 10−3vs. 2.18 × 10−5 kg1,4-DB eq). Additionally, endpoint analysis of Scenario 0 highlights that the AAO biological and coagulation tanks are the main contributors to Human Health and Resource impacts, with respective scores of 13.8 mPt and 11.5 mPt, demonstrating areas for targeted improvement. The utilization of sewage sludge as fertilizer reduces the impact on climate change by 80% (0.036 vs. 0.3 kgCO2 eq) and nearly eliminates freshwater eutrophication (5.01 × 10−6vs. 1.77 × 10−4 kgP eq) compared to landfill. These findings provide detailed insights into different treatment processes and resource utilization strategies, offering a robust framework for enhancing sustainability in developing countries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Inside back cover Back cover Introduction to the circular economy themed collection Technoeconomic analysis of an integrated camelina straw-based pellet and ethanol production system† Correction: Carbon removal efficiency and energy requirement of engineered carbon removal technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1