Carbon removal efficiency and energy requirement of engineered carbon removal technologies

Daniel L. Sanchez, Peter Psarras, Hannah K. Murnen and Barclay Rogers
{"title":"Carbon removal efficiency and energy requirement of engineered carbon removal technologies","authors":"Daniel L. Sanchez, Peter Psarras, Hannah K. Murnen and Barclay Rogers","doi":"10.1039/D4SU00552J","DOIUrl":null,"url":null,"abstract":"<p >To ensure carbon negativity, processes that achieve carbon dioxide removal (CDR) from the atmosphere must consider lifecycle emissions and energy requirements across the entire system. We conduct a harmonized lifecycle greenhouse gas assessment to compare the carbon removal efficiency and total energy required for twelve engineered carbon removal technologies. The goal of this comparison is to enable the assessment of diverse engineered carbon removal approaches on a consistent basis. Biomass-based CDR approaches generally maintain higher carbon removal efficiency than direct air capture (DAC) and, to a lesser extent, enhanced rock weathering (ERW) due to the high concentration of carbon within the biomass and the relatively low energy requirements for processing the biomass for removal. Nevertheless, there is high variance in CDR approaches, as some biomass conversion processes (<em>e.g.</em>, pyrolysis for biochar or gasification for fuels) exhibit high, yet variable, carbon losses, while DAC and ERW can utilize low-carbon energy inputs for more efficient removal. Regarding energy use, ERW and biomass-based approaches generally require less energy than DAC today, but biomass approaches again exhibit more variation. Displacement of products, when included, increases the total climate benefits of biomass used for bioenergy with carbon capture and storage (BECCS) and biochar. These two measures are intuitive metrics to guide allocation of scarce resources amongst potentially competing uses of biomass and low-carbon energy.</p>","PeriodicalId":74745,"journal":{"name":"RSC sustainability","volume":" 3","pages":" 1424-1433"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/su/d4su00552j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC sustainability","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/su/d4su00552j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To ensure carbon negativity, processes that achieve carbon dioxide removal (CDR) from the atmosphere must consider lifecycle emissions and energy requirements across the entire system. We conduct a harmonized lifecycle greenhouse gas assessment to compare the carbon removal efficiency and total energy required for twelve engineered carbon removal technologies. The goal of this comparison is to enable the assessment of diverse engineered carbon removal approaches on a consistent basis. Biomass-based CDR approaches generally maintain higher carbon removal efficiency than direct air capture (DAC) and, to a lesser extent, enhanced rock weathering (ERW) due to the high concentration of carbon within the biomass and the relatively low energy requirements for processing the biomass for removal. Nevertheless, there is high variance in CDR approaches, as some biomass conversion processes (e.g., pyrolysis for biochar or gasification for fuels) exhibit high, yet variable, carbon losses, while DAC and ERW can utilize low-carbon energy inputs for more efficient removal. Regarding energy use, ERW and biomass-based approaches generally require less energy than DAC today, but biomass approaches again exhibit more variation. Displacement of products, when included, increases the total climate benefits of biomass used for bioenergy with carbon capture and storage (BECCS) and biochar. These two measures are intuitive metrics to guide allocation of scarce resources amongst potentially competing uses of biomass and low-carbon energy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
期刊最新文献
Inside back cover Back cover Introduction to the circular economy themed collection Technoeconomic analysis of an integrated camelina straw-based pellet and ethanol production system† Correction: Carbon removal efficiency and energy requirement of engineered carbon removal technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1