In-situ deposition of β-FeOOH nanoparticles on commercially available filter paper for fast and efficient removal of antibiotic

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Advanced Composites and Hybrid Materials Pub Date : 2025-03-04 DOI:10.1007/s42114-025-01212-5
Tingting Xi, Chaojian Li, Yaqian Yu, Weiqi Wei, Sha Wang, Tingting Xu, Huining Xiao, Hongqi Dai, Xuelian Zhou, Huiyang Bian
{"title":"In-situ deposition of β-FeOOH nanoparticles on commercially available filter paper for fast and efficient removal of antibiotic","authors":"Tingting Xi,&nbsp;Chaojian Li,&nbsp;Yaqian Yu,&nbsp;Weiqi Wei,&nbsp;Sha Wang,&nbsp;Tingting Xu,&nbsp;Huining Xiao,&nbsp;Hongqi Dai,&nbsp;Xuelian Zhou,&nbsp;Huiyang Bian","doi":"10.1007/s42114-025-01212-5","DOIUrl":null,"url":null,"abstract":"<div><p>Enhancing the dispersibility and recoverability of powdered catalysts is essential for developing efficient and cost-effective photocatalytic systems. Herein, <i>β</i>-FeOOH nanoparticles were in-situ deposited on commercially available filter paper (FP) to construct paper-based composite material (<i>β</i>-FeOOH@FP). Results showed that the rod-like <i>β</i>-FeOOH nanoparticles were uniformly distributed in the FP matrix without destroying the crystalline structure of cellulose. The resulting <i>β</i>-FeOOH synthesized at 3 h presented the highest photoelectrochemical response and exhibited better suppression of electron–hole recombination, allowing more photogenerated electrons to participate in the reaction. The <i>β</i>-FeOOH@FP catalyst achieved a 94.1% photocatalytic degradation rate of tetracycline (TC) within 120 min compared to the pure <i>β</i>-FeOOH (42.2%) and FP (20.1%) under simulated visible light irradiation. Photocatalytic degradation kinetics also demonstrated that the rate constant of <i>β</i>-FeOOH@FP was 9.6 × 10<sup>−3</sup> min<sup>−1</sup>, much higher than that of others. In addition, the resulting <i>β</i>-FeOOH@FP composite material exhibited excellent stability and reusability with a photocatalytic efficiency of over 90% after five cycles. These findings provide a simple and cost-effective strategy to improve the degradation performance of powdered semiconductor catalysts and pave a new way to develop cellulose-based nanocomposites with high photocatalytic efficiency.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 2","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01212-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01212-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing the dispersibility and recoverability of powdered catalysts is essential for developing efficient and cost-effective photocatalytic systems. Herein, β-FeOOH nanoparticles were in-situ deposited on commercially available filter paper (FP) to construct paper-based composite material (β-FeOOH@FP). Results showed that the rod-like β-FeOOH nanoparticles were uniformly distributed in the FP matrix without destroying the crystalline structure of cellulose. The resulting β-FeOOH synthesized at 3 h presented the highest photoelectrochemical response and exhibited better suppression of electron–hole recombination, allowing more photogenerated electrons to participate in the reaction. The β-FeOOH@FP catalyst achieved a 94.1% photocatalytic degradation rate of tetracycline (TC) within 120 min compared to the pure β-FeOOH (42.2%) and FP (20.1%) under simulated visible light irradiation. Photocatalytic degradation kinetics also demonstrated that the rate constant of β-FeOOH@FP was 9.6 × 10−3 min−1, much higher than that of others. In addition, the resulting β-FeOOH@FP composite material exhibited excellent stability and reusability with a photocatalytic efficiency of over 90% after five cycles. These findings provide a simple and cost-effective strategy to improve the degradation performance of powdered semiconductor catalysts and pave a new way to develop cellulose-based nanocomposites with high photocatalytic efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
期刊最新文献
Twin-coated skeleton PEDOT: PSS/MXene/para-aramid nanofibers hybrid aerogel with efficient EMI shielding performance and tunable power coefficient In-situ deposition of β-FeOOH nanoparticles on commercially available filter paper for fast and efficient removal of antibiotic Nanocomposites of sequential dual curing of thiol-epoxy systems with Fe3O4 nanoparticles for remote/in situ applications: thermomechanical, shape memory, and induction heating properties Cu–Zn@HA bimetallic nanozymes: a novel approach for ROS clearance and macrophage polarization in colitis therapy Structural design and simulation of ultra-broadband TiCxN1-x fibers/Si3N4 high-temperature microwave absorbing composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1