Estefanía Martínez, Jennifer Gamboa, Carla V. Finkielstein, Ana Isabel Cañas, Marlon Andrés Osorio, Yesid Vélez, Néstor Llinas, Cristina Isabel Castro
{"title":"Oral dosage forms for drug delivery to the colon: an existing gap between research and commercial applications","authors":"Estefanía Martínez, Jennifer Gamboa, Carla V. Finkielstein, Ana Isabel Cañas, Marlon Andrés Osorio, Yesid Vélez, Néstor Llinas, Cristina Isabel Castro","doi":"10.1007/s10856-025-06868-5","DOIUrl":null,"url":null,"abstract":"<div><p>Oral drug administration is the preferred route for pharmaceuticals, accounting for ~90% of the global pharmaceutical market due to its convenience and cost-effectiveness. This study provides a comprehensive scientific and technological analysis of the latest advances in oral dosage forms for colon-targeted drug delivery. Utilizing scientific and patent databases, along with a bibliometric analysis and bibliographical review, we compared the oral dosage forms (technology) with the specific application of the technology (colon delivery) using four search equations. Our findings reveal a gap in the publications and inventions associated with oral dosage forms for colon release compared to oral dosage forms for general applications. While tablets and capsules were found the most used dosage forms, other platforms such as nanoparticles, microparticles, and emulsions have been also explored. Enteric coatings are the most frequently applied excipient to prevent the early drug release in the stomach with pH-triggered systems being the predominant release mechanism. In summary, this review provides a comprehensive analysis of the last advancements and high-impact resources in the development of oral dosage forms for colon-targeted drug delivery, providing insights into the technological maturity of these approaches.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-025-06868-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-025-06868-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Oral drug administration is the preferred route for pharmaceuticals, accounting for ~90% of the global pharmaceutical market due to its convenience and cost-effectiveness. This study provides a comprehensive scientific and technological analysis of the latest advances in oral dosage forms for colon-targeted drug delivery. Utilizing scientific and patent databases, along with a bibliometric analysis and bibliographical review, we compared the oral dosage forms (technology) with the specific application of the technology (colon delivery) using four search equations. Our findings reveal a gap in the publications and inventions associated with oral dosage forms for colon release compared to oral dosage forms for general applications. While tablets and capsules were found the most used dosage forms, other platforms such as nanoparticles, microparticles, and emulsions have been also explored. Enteric coatings are the most frequently applied excipient to prevent the early drug release in the stomach with pH-triggered systems being the predominant release mechanism. In summary, this review provides a comprehensive analysis of the last advancements and high-impact resources in the development of oral dosage forms for colon-targeted drug delivery, providing insights into the technological maturity of these approaches.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.