{"title":"Fatigue resistance of concrete: influence of time-dependent scattering of compressive strength","authors":"Sören Voß, Boso Schmidt, Vincent Oettel","doi":"10.1617/s11527-024-02517-5","DOIUrl":null,"url":null,"abstract":"<div><p>In terms of sustainability and resource efficiency, concrete structures such as bridges and wind turbines should be used as long as possible and—in the case of new constructions (as a replacement)—the cross-sections should be as slender and thin-walled as possible using high-performance or ultra-high performance concrete. A further development of the fatigue design would be useful both for the verification of a possible longer remaining service life and for a safe, but also for economical and sustainable design of these engineering structures, which are particularly exposed to fatigue. The verifications of structural safety for non-static loading of concrete in the national and international design codes and standards provide for high safety margins, particularly for concretes with high strengths. These result, among other things, from the large scatter of the number of cycles to failure in experimental fatigue tests. In this article, current verifications of structural safety for non-static loading of concrete are presented, results of compressive tests on concrete specimens of different strengths, geometries and test boundary conditions are summarised in a database and the scatter of the experimentally determined number of cycles to failure is statistically evaluated. In addition, the compressive strength of concrete, which significantly influence the scatter of the numbers of cycles to failure, are statistically analysed for concretes of different ages. From this, a continuous description of the strength development and its scatter is derived. Finally, the compressive stress levels of the previously analysed fatigue tests are adjusted using a stochastic approach in order to take into account the scatter of the compressive strength of concrete as a function of the concrete age. By applying the time-dependent scatter of the compressive strength of concrete, a significant reduction in the scatter bandwidth of the analysed numbers of cycles to failure in the S–N curve is achieved.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1617/s11527-024-02517-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02517-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In terms of sustainability and resource efficiency, concrete structures such as bridges and wind turbines should be used as long as possible and—in the case of new constructions (as a replacement)—the cross-sections should be as slender and thin-walled as possible using high-performance or ultra-high performance concrete. A further development of the fatigue design would be useful both for the verification of a possible longer remaining service life and for a safe, but also for economical and sustainable design of these engineering structures, which are particularly exposed to fatigue. The verifications of structural safety for non-static loading of concrete in the national and international design codes and standards provide for high safety margins, particularly for concretes with high strengths. These result, among other things, from the large scatter of the number of cycles to failure in experimental fatigue tests. In this article, current verifications of structural safety for non-static loading of concrete are presented, results of compressive tests on concrete specimens of different strengths, geometries and test boundary conditions are summarised in a database and the scatter of the experimentally determined number of cycles to failure is statistically evaluated. In addition, the compressive strength of concrete, which significantly influence the scatter of the numbers of cycles to failure, are statistically analysed for concretes of different ages. From this, a continuous description of the strength development and its scatter is derived. Finally, the compressive stress levels of the previously analysed fatigue tests are adjusted using a stochastic approach in order to take into account the scatter of the compressive strength of concrete as a function of the concrete age. By applying the time-dependent scatter of the compressive strength of concrete, a significant reduction in the scatter bandwidth of the analysed numbers of cycles to failure in the S–N curve is achieved.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.