Structural characterization and in vitro hypolipidemic and hypoglycemic activities of a novel neutral polysaccharide from Siraitia grosvenorii (Luo Han Guo) flowers
Hao Teng, Limei Qiu, Zhizhi Huang, Sam Al-Dalali, Cailin Li, Aiying Xu, Zhigui He
{"title":"Structural characterization and in vitro hypolipidemic and hypoglycemic activities of a novel neutral polysaccharide from Siraitia grosvenorii (Luo Han Guo) flowers","authors":"Hao Teng, Limei Qiu, Zhizhi Huang, Sam Al-Dalali, Cailin Li, Aiying Xu, Zhigui He","doi":"10.1186/s40538-025-00750-w","DOIUrl":null,"url":null,"abstract":"<div><p><i>Siraitia grosvenorii,</i> commonly known as Luo Han Guo, is a medicinal and edible plant whose flowers contain bioactive polysaccharides with underexplored therapeutic potential. This study isolated a novel polysaccharide fraction (SGFP-2) from <i>Siraitia grosvenorii</i> flowers through DEAE-Crystarose Fast Flow chromatography. Structural analysis revealed SGFP-2 is a heteropolysaccharide with average molecular weight of 1.67 × 10<sup>5</sup> Da and composed of Rha, Glc, Gal, GlcA, GalA, Man, and Ara with a molar ratio of 8.17:1.54:60.06:3.41:5.37:3.54:15.44. Methylation analysis identified dominant glycosidic linkages of SGFP-2 as → 6)-Gal<i>p</i>-(1 → (30.42%), Gal<i>p</i>-(1 → (22.69%), Ara<i>f</i>-(1 → (18.29%), Rha<i>p</i>-(1 → (8.70%), → 3,6)-Gal<i>p</i>-(1 → (8.54%). Scanning electron microscopy and Congo red staining results showed that the network structure of SGFP-2 was lamellar without trihelix conformation. In vitro experiments have revealed that SGFP-2 possesses lipid-binding capacity, bile salt adsorption properties, and potent inhibitory activity against crucial enzymes involved in glucose-lipid metabolism, specifically pancreatic lipase, cholesterol esterase, α-amylase, and α-glucosidase. These findings suggest that SGFP-2 demonstrates potential hypolipidemic and hypoglycemic effects in vitro. This study provides preliminary evidence to support further development and utilization of <i>Siraitia grosvenorii</i> flower polysaccharides.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00750-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-025-00750-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Siraitia grosvenorii, commonly known as Luo Han Guo, is a medicinal and edible plant whose flowers contain bioactive polysaccharides with underexplored therapeutic potential. This study isolated a novel polysaccharide fraction (SGFP-2) from Siraitia grosvenorii flowers through DEAE-Crystarose Fast Flow chromatography. Structural analysis revealed SGFP-2 is a heteropolysaccharide with average molecular weight of 1.67 × 105 Da and composed of Rha, Glc, Gal, GlcA, GalA, Man, and Ara with a molar ratio of 8.17:1.54:60.06:3.41:5.37:3.54:15.44. Methylation analysis identified dominant glycosidic linkages of SGFP-2 as → 6)-Galp-(1 → (30.42%), Galp-(1 → (22.69%), Araf-(1 → (18.29%), Rhap-(1 → (8.70%), → 3,6)-Galp-(1 → (8.54%). Scanning electron microscopy and Congo red staining results showed that the network structure of SGFP-2 was lamellar without trihelix conformation. In vitro experiments have revealed that SGFP-2 possesses lipid-binding capacity, bile salt adsorption properties, and potent inhibitory activity against crucial enzymes involved in glucose-lipid metabolism, specifically pancreatic lipase, cholesterol esterase, α-amylase, and α-glucosidase. These findings suggest that SGFP-2 demonstrates potential hypolipidemic and hypoglycemic effects in vitro. This study provides preliminary evidence to support further development and utilization of Siraitia grosvenorii flower polysaccharides.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.