Wen Hu, Jiayong Zhu, Qi Zhang, Xiaoqian Lu, Luting Yu, Bin Li, Liaobin Chen, Hui Wang
{"title":"Cholesterol-27α-hydroxylase inhibitor nilvadipine can effectively treat cholestatic liver injury in adult offspring induced by prenatal dexamethasone exposure","authors":"Wen Hu, Jiayong Zhu, Qi Zhang, Xiaoqian Lu, Luting Yu, Bin Li, Liaobin Chen, Hui Wang","doi":"10.1002/mco2.70110","DOIUrl":null,"url":null,"abstract":"<p>Prenatal dexamethasone exposure (PDE) can increase offspring susceptibility to various diseases. However, the pathogenesis and early prevention for PDE offspring prone to cholestatic liver injury have been unclear. In this study, we collected human umbilical cord blood from neonates with prenatal dexamethasone therapy, showing increased primary unconjugated bile acid levels in utero. PDE increased blood primary bile acid levels, enhanced endoplasmic reticulum stress, and led to cholestatic liver injury in adulthood in rats, which is accompanied by the persistent increase of H3K14ac level in cholesterol 27α-hydroxylase (CYP27A1) promoter and its expression before and after birth. In vitro, dexamethasone activates glucocorticoid receptors, binding to the CYP27A1 promoter, and promotes its transcriptional expression. Through the miR-450b-3p/SIRT1 pathway, it increased the H3K14ac level of the CYP27A1 promoter to enhance its transcription, which continues after birth. Finally, nilvadipine effectively reversed cholestatic liver injury induced by PDE. This study confirmed PDE could cause cholestatic liver injury, and innovatively proposed its early intervention target (CYP27A1) and effective drug (nilvadipine), providing a theoretical and experimental basis for guiding rational drug use during pregnancy, and preventing and treating the fetal-originated cholestatic liver injury.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":"6 3","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70110","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Prenatal dexamethasone exposure (PDE) can increase offspring susceptibility to various diseases. However, the pathogenesis and early prevention for PDE offspring prone to cholestatic liver injury have been unclear. In this study, we collected human umbilical cord blood from neonates with prenatal dexamethasone therapy, showing increased primary unconjugated bile acid levels in utero. PDE increased blood primary bile acid levels, enhanced endoplasmic reticulum stress, and led to cholestatic liver injury in adulthood in rats, which is accompanied by the persistent increase of H3K14ac level in cholesterol 27α-hydroxylase (CYP27A1) promoter and its expression before and after birth. In vitro, dexamethasone activates glucocorticoid receptors, binding to the CYP27A1 promoter, and promotes its transcriptional expression. Through the miR-450b-3p/SIRT1 pathway, it increased the H3K14ac level of the CYP27A1 promoter to enhance its transcription, which continues after birth. Finally, nilvadipine effectively reversed cholestatic liver injury induced by PDE. This study confirmed PDE could cause cholestatic liver injury, and innovatively proposed its early intervention target (CYP27A1) and effective drug (nilvadipine), providing a theoretical and experimental basis for guiding rational drug use during pregnancy, and preventing and treating the fetal-originated cholestatic liver injury.