{"title":"Solutions of the Fractional Differential Equations Including Caputo–Fabrizio, Caputo, and Integer Order Derivatives via SMV Polynomials","authors":"H. Çerdik Yaslan","doi":"10.1002/jnm.70033","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Fractional linear and nonlinear differential equations with the Caputo–Fabrizio, Caputo, and integer order derivatives are considered in this paper. An approximate solution of the problem is written as a truncated series of the shifted Morgan-Voyce (SMV) polynomials with unknown coefficients. Our goal is to compute the numerical values of the unknown coefficients. First, the Caputo–Fabrizio, Caputo, and integer order derivatives of the approximate solution expressed in terms of SMV polynomials are presented in the form of the matrix relations. The main advantage of these matrix relations is that they convert the differential equation, including three different types of derivatives, into a system of algebraic equations, which allows us to easily transfer the problem into computer programming. Furthermore, the convergence of the method is investigated in the Sobolev space. Finally, the application of the method is presented by using numerical examples. In the numerical examples, figures and tables are used to discuss the effect of different values of fractional order on the solution and to show the accuracy of the method by comparing it with existing numerical solutions.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70033","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Fractional linear and nonlinear differential equations with the Caputo–Fabrizio, Caputo, and integer order derivatives are considered in this paper. An approximate solution of the problem is written as a truncated series of the shifted Morgan-Voyce (SMV) polynomials with unknown coefficients. Our goal is to compute the numerical values of the unknown coefficients. First, the Caputo–Fabrizio, Caputo, and integer order derivatives of the approximate solution expressed in terms of SMV polynomials are presented in the form of the matrix relations. The main advantage of these matrix relations is that they convert the differential equation, including three different types of derivatives, into a system of algebraic equations, which allows us to easily transfer the problem into computer programming. Furthermore, the convergence of the method is investigated in the Sobolev space. Finally, the application of the method is presented by using numerical examples. In the numerical examples, figures and tables are used to discuss the effect of different values of fractional order on the solution and to show the accuracy of the method by comparing it with existing numerical solutions.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.