GPU-Accelerated Lattice Boltzmann Simulations of Power-Law Non-Newtonian Fluid Flow in a Diagonally Driven Cavity Using D3Q27 MRT-LBM

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Engineering reports : open access Pub Date : 2025-03-04 DOI:10.1002/eng2.70047
Md. Mamun Molla, Amzad Hossain, Md. Mahadul Islam
{"title":"GPU-Accelerated Lattice Boltzmann Simulations of Power-Law Non-Newtonian Fluid Flow in a Diagonally Driven Cavity Using D3Q27 MRT-LBM","authors":"Md. Mamun Molla,&nbsp;Amzad Hossain,&nbsp;Md. Mahadul Islam","doi":"10.1002/eng2.70047","DOIUrl":null,"url":null,"abstract":"<p>The study examines the flow dynamics of power-law non-Newtonian fluids in a cubic cavity with a top lid-driven diagonally-driven diagonally using the D3Q27 multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). This situation frequently occurs in both natural and industrial processes. Utilizing CUDA C++ programming on a graphics processing unit (GPU) speeds up the simulations, enabling effective investigation of intricate fluid dynamics. Non-Newtonian behaviors, such as shear-thinning and shear-thickening properties, are frequently found in many real-world fluid systems and are captured by the power-law rheology model. LBM provides a mesoscopic method that makes handling intricate geometries easier and scales effectively on GPUs and other parallel computing architectures. The simulations investigate how Reynolds numbers (<span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mi>e</mi>\n <mo>=</mo>\n <mn>100</mn>\n <mo>,</mo>\n <mn>200</mn>\n <mo>,</mo>\n <mn>400</mn>\n <mo>,</mo>\n <mn>500</mn>\n <mo>,</mo>\n <mn>600</mn>\n <mo>,</mo>\n <mn>800</mn>\n <mo>,</mo>\n <mn>1000</mn>\n <mo>,</mo>\n <mn>1200</mn>\n </mrow>\n <annotation>$$ \\mathit{\\operatorname{Re}}=100,200,400,500,600,800,1000,1200 $$</annotation>\n </semantics></math>) and power-law indices (<span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>0</mn>\n <mo>.</mo>\n <mn>8</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>.</mo>\n <mn>4</mn>\n </mrow>\n <annotation>$$ n=0.8,1,1.4 $$</annotation>\n </semantics></math>) affect non-Newtonian fluid flow characteristics like streamlines, velocity profiles, viscosity distributions, iso-surfaces, and helicity (twistiness). GPU acceleration makes faster simulations and parametric research possible, improving computational efficiency. These findings provide information for non-Newtonian fluid engineering applications in the food industry, biomedical engineering, and polymer processing. Because of their decreased viscosity, shear-thinning fluids have higher helicity than shear-thickening fluids. The numerical results of the study offer applicable standards for evaluating 3D codes for fluids with non-Newtonian power laws. The uniqueness is that a D3Q27 multiple-relaxation-time lattice Boltzmann method (MRT-LBM) framework with GPU acceleration can be used to model an underexplored situation, revealing fluid dynamics and rheological features with unprecedented detail and computing efficiency. We also examine how the power-law index influences vortex generation, helicity, and flow stability in a diagonally driven cavity. Additionally, a comparison of the D3Q19 and D3Q27 MRT-LBM models is provided, emphasizing how they handle complex fluid behaviors differently.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70047","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The study examines the flow dynamics of power-law non-Newtonian fluids in a cubic cavity with a top lid-driven diagonally-driven diagonally using the D3Q27 multiple-relaxation-time (MRT) lattice Boltzmann method (LBM). This situation frequently occurs in both natural and industrial processes. Utilizing CUDA C++ programming on a graphics processing unit (GPU) speeds up the simulations, enabling effective investigation of intricate fluid dynamics. Non-Newtonian behaviors, such as shear-thinning and shear-thickening properties, are frequently found in many real-world fluid systems and are captured by the power-law rheology model. LBM provides a mesoscopic method that makes handling intricate geometries easier and scales effectively on GPUs and other parallel computing architectures. The simulations investigate how Reynolds numbers ( R e = 100 , 200 , 400 , 500 , 600 , 800 , 1000 , 1200 $$ \mathit{\operatorname{Re}}=100,200,400,500,600,800,1000,1200 $$ ) and power-law indices ( n = 0 . 8 , 1 , 1 . 4 $$ n=0.8,1,1.4 $$ ) affect non-Newtonian fluid flow characteristics like streamlines, velocity profiles, viscosity distributions, iso-surfaces, and helicity (twistiness). GPU acceleration makes faster simulations and parametric research possible, improving computational efficiency. These findings provide information for non-Newtonian fluid engineering applications in the food industry, biomedical engineering, and polymer processing. Because of their decreased viscosity, shear-thinning fluids have higher helicity than shear-thickening fluids. The numerical results of the study offer applicable standards for evaluating 3D codes for fluids with non-Newtonian power laws. The uniqueness is that a D3Q27 multiple-relaxation-time lattice Boltzmann method (MRT-LBM) framework with GPU acceleration can be used to model an underexplored situation, revealing fluid dynamics and rheological features with unprecedented detail and computing efficiency. We also examine how the power-law index influences vortex generation, helicity, and flow stability in a diagonally driven cavity. Additionally, a comparison of the D3Q19 and D3Q27 MRT-LBM models is provided, emphasizing how they handle complex fluid behaviors differently.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用D3Q27 MRT-LBM的gpu加速晶格玻尔兹曼模拟对角驱动腔中幂律非牛顿流体的流动
采用D3Q27多重松弛时间(MRT)晶格玻尔兹曼方法(LBM)研究了幂律非牛顿流体在顶盖驱动对角线驱动的立方腔中的流动动力学。这种情况经常发生在自然和工业过程中。在图形处理单元(GPU)上使用CUDA c++编程可以加快模拟速度,从而能够有效地研究复杂的流体动力学。非牛顿行为,如剪切变薄和剪切增厚特性,在许多现实世界的流体系统中经常发现,并被幂律流变模型捕获。LBM提供了一种介观方法,可以更容易地处理复杂的几何图形,并在gpu和其他并行计算架构上有效扩展。模拟研究了雷诺数(R = 100,200,400,500,600,800,1000,1200 $$ \mathit{\operatorname{Re}}=100,200,400,500,600,800,1000,1200 $$)和幂律指数(n = 0。8、1、1。4 $$ n=0.8,1,1.4 $$)影响非牛顿流体流动特性,如流线、速度剖面、粘度分布、等面和螺旋度(扭曲度)。GPU加速使更快的模拟和参数化研究成为可能,提高了计算效率。这些发现为非牛顿流体工程在食品工业、生物医学工程和聚合物加工中的应用提供了信息。由于粘度降低,剪切减薄流体比剪切增稠流体具有更高的螺旋度。研究的数值结果为非牛顿幂律流体的三维代码的评定提供了适用的标准。独特之处在于,具有GPU加速的D3Q27多重松弛时间晶格玻尔兹曼方法(MRT-LBM)框架可用于模拟未被探索的情况,以前所未有的细节和计算效率揭示流体动力学和流变特征。我们还研究了幂律指数如何影响涡旋的产生、螺旋度和对角线驱动腔中的流动稳定性。此外,还提供了D3Q19和D3Q27 MRT-LBM模型的比较,强调了它们处理复杂流体行为的不同之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
期刊最新文献
Effect of the Strut Thickness on the Mechanical Properties, Deformation, and Failure Mechanisms of Vascular Bundle–Inspired Structures Computational Algorithmic Innovations in Differential Equation-Based Dynamic Process Modeling Finite Element-Based Wear Prediction Using Archard's Law for Single Mobility Bearing of Total Hip Prosthesis During Walking: A Literature Review Fractional Novel Analytical Method (FNAM): An Improved Innovative Numerical Scheme to Solve Fractional Differential-Difference Equations Mapping Quantum Computing Techniques for NP-Hard Problems in Operations Management and Operations Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1