Exploring Augmented Reality for Dental Implant Surgery: Feasibility of Using Smartphones as Navigation Tools

IF 1.7 Q3 DENTISTRY, ORAL SURGERY & MEDICINE Clinical and Experimental Dental Research Pub Date : 2025-03-05 DOI:10.1002/cre2.70110
Richard Mosch, Vasilios Alevizakos, Dragan Alexander Ströbele, Marcus Schiller, Constantin von See
{"title":"Exploring Augmented Reality for Dental Implant Surgery: Feasibility of Using Smartphones as Navigation Tools","authors":"Richard Mosch,&nbsp;Vasilios Alevizakos,&nbsp;Dragan Alexander Ströbele,&nbsp;Marcus Schiller,&nbsp;Constantin von See","doi":"10.1002/cre2.70110","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objectives</h3>\n \n <p>Dental implant placement requires exceptional precision to ensure functional and esthetic success. Traditional guidance methods, such as static drilling guides and dynamic navigation systems, have improved accuracy but are limited by high costs, rigidity, and reliance on specialized hardware. This study introduces an augmented reality (AR) system using consumer smartphones for real-time navigation in dental implant placement. The system aims to provide a cost-effective, eco-friendly alternative to conventional methods by integrating virtual planning with physical models.</p>\n </section>\n \n <section>\n \n <h3> Material and Methods</h3>\n \n <p>A modified dental training model with removable parallel pins served as the physical component. Implant positions were digitally planned and color-coded using 3D scanning and modeling software, then integrated into an AR application built with Unity Engine. A smartphone's camera was calibrated to project virtual overlays onto the physical model. In vitro testing evaluated alignment accuracy, drill guidance, and system performance under controlled lighting conditions.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The AR system successfully aligned virtual overlays with the physical model, providing effective visual guidance for implant drill positioning. Operators maintained planned trajectories, demonstrating the feasibility of AR as an alternative to static and dynamic guidance systems. Challenges included the system's sensitivity to stable lighting and visual cues.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>This AR-based approach offers an accessible and sustainable solution for modern dental implantology. Future research will focus on quantitative accuracy assessments, AI integration for enhanced performance, and clinical trials to validate real-world applicability. AR technology has the potential to transform dental practices by improving outcomes while reducing costs and environmental impact.</p>\n </section>\n </div>","PeriodicalId":10203,"journal":{"name":"Clinical and Experimental Dental Research","volume":"11 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cre2.70110","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Dental Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cre2.70110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

Dental implant placement requires exceptional precision to ensure functional and esthetic success. Traditional guidance methods, such as static drilling guides and dynamic navigation systems, have improved accuracy but are limited by high costs, rigidity, and reliance on specialized hardware. This study introduces an augmented reality (AR) system using consumer smartphones for real-time navigation in dental implant placement. The system aims to provide a cost-effective, eco-friendly alternative to conventional methods by integrating virtual planning with physical models.

Material and Methods

A modified dental training model with removable parallel pins served as the physical component. Implant positions were digitally planned and color-coded using 3D scanning and modeling software, then integrated into an AR application built with Unity Engine. A smartphone's camera was calibrated to project virtual overlays onto the physical model. In vitro testing evaluated alignment accuracy, drill guidance, and system performance under controlled lighting conditions.

Results

The AR system successfully aligned virtual overlays with the physical model, providing effective visual guidance for implant drill positioning. Operators maintained planned trajectories, demonstrating the feasibility of AR as an alternative to static and dynamic guidance systems. Challenges included the system's sensitivity to stable lighting and visual cues.

Conclusions

This AR-based approach offers an accessible and sustainable solution for modern dental implantology. Future research will focus on quantitative accuracy assessments, AI integration for enhanced performance, and clinical trials to validate real-world applicability. AR technology has the potential to transform dental practices by improving outcomes while reducing costs and environmental impact.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical and Experimental Dental Research
Clinical and Experimental Dental Research DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
3.30
自引率
5.60%
发文量
165
审稿时长
26 weeks
期刊介绍: Clinical and Experimental Dental Research aims to provide open access peer-reviewed publications of high scientific quality representing original clinical, diagnostic or experimental work within all disciplines and fields of oral medicine and dentistry. The scope of Clinical and Experimental Dental Research comprises original research material on the anatomy, physiology and pathology of oro-facial, oro-pharyngeal and maxillofacial tissues, and functions and dysfunctions within the stomatognathic system, and the epidemiology, aetiology, prevention, diagnosis, prognosis and therapy of diseases and conditions that have an effect on the homeostasis of the mouth, jaws, and closely associated structures, as well as the healing and regeneration and the clinical aspects of replacement of hard and soft tissues with biomaterials, and the rehabilitation of stomatognathic functions. Studies that bring new knowledge on how to advance health on the individual or public health levels, including interactions between oral and general health and ill-health are welcome.
期刊最新文献
Risk Factors for Nonsyndromic Orofacial Clefts Among Saudi Children Correlation of Body Mass Index With Severity of Periodontitis: A Cross-Sectional Study Impact of Autoclaving on the Dimensional Stability of 3D-Printed Guides for Orthodontic Mini-Implant Insertion – An In Vitro Study The Use of Cyanoacrylate Tissue Adhesives in Various Wound Suturing Techniques to Enhance the Healing Process of Surgical Wounds: An Animal Study Assessing the Long-Term Survival of Dental Implants in A Retrospective Analysis: Immediate Versus Delayed Placement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1