Preparation of hybrid β-chitosan - squid pen protein hydrogel beads by ionic liquid regeneration for adsorption of copper(II) and zinc(II) from wastewater.

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Soft Matter Pub Date : 2025-03-05 DOI:10.1039/d4sm01300j
Liyan Moralez, Pedro Nakasu, Jason Hallett
{"title":"Preparation of hybrid β-chitosan - squid pen protein hydrogel beads by ionic liquid regeneration for adsorption of copper(II) and zinc(II) from wastewater.","authors":"Liyan Moralez, Pedro Nakasu, Jason Hallett","doi":"10.1039/d4sm01300j","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the use of squid pen protein to enhance the chemical stability and heavy metal ion (Cu<sup>2+</sup> and Zn<sup>2+</sup>) affinity of β-chitosan. Hydrogel beads with enhanced porosity and scalability were prepared using 1-butyl-3-methylimidazolium acetate, ([BMIM][OAc]), which simultaneously functionalized β-chitosan by decreasing its crystallinity and enhancing binding site access, as indicated by Fourier transform infrared (FT-IR) spectroscopy, which revealed intensification of functional group expression. Notably, this functionalization compensated for the effects of glutaraldehyde crosslinking. However, initial experiments noted a reduction in adsorption capacity as the squid pen protein content increased, with Cu<sup>2+</sup> and Zn<sup>2+</sup> adsorption being particularly inhibited at lower pH levels due to protonation. Subsequent batch adsorption studies identified optimal conditions for Cu<sup>2+</sup> and Zn<sup>2+</sup> uptake, with 24-hours being adequate to appraoch equilibrium, and revealed that adsorption followed pseudo-second-order kinetics, indicative of chemisorption. Furthermore, analysis of adsorption kinetics by intraparticle diffusion revealed that mass transfer was rate-limiting, with Cu<sup>2+</sup> and Zn<sup>2+</sup> transport being a multi-step process involving successive and slower phases controlled by external diffusion, intraparticle diffusion and equilibrium, respectively. Lastly, equilibrium studies revealed that the adsorption of Cu<sup>2+</sup> and Zn<sup>2+</sup> corresponded with the Langmuir model, suggesting monolayer coverage with maximum adsorption capacities of 67.4 mg g<sup>-1</sup> for Cu<sup>2+</sup> and 24.1 mg g<sup>-1</sup> for Zn<sup>2+</sup>. Overall, the potential of squid pen protein as an economical filler for β-chitosan-based adsorbents was validated alongside the efficiency of using [BMIM][OAc] for the non-toxic functionalization of β-chitosan. Support of green chemistry principles was evidenced by a high atom economy and low environmental impact, indicating a sustainable method for preparing effective biosorbents.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm01300j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the use of squid pen protein to enhance the chemical stability and heavy metal ion (Cu2+ and Zn2+) affinity of β-chitosan. Hydrogel beads with enhanced porosity and scalability were prepared using 1-butyl-3-methylimidazolium acetate, ([BMIM][OAc]), which simultaneously functionalized β-chitosan by decreasing its crystallinity and enhancing binding site access, as indicated by Fourier transform infrared (FT-IR) spectroscopy, which revealed intensification of functional group expression. Notably, this functionalization compensated for the effects of glutaraldehyde crosslinking. However, initial experiments noted a reduction in adsorption capacity as the squid pen protein content increased, with Cu2+ and Zn2+ adsorption being particularly inhibited at lower pH levels due to protonation. Subsequent batch adsorption studies identified optimal conditions for Cu2+ and Zn2+ uptake, with 24-hours being adequate to appraoch equilibrium, and revealed that adsorption followed pseudo-second-order kinetics, indicative of chemisorption. Furthermore, analysis of adsorption kinetics by intraparticle diffusion revealed that mass transfer was rate-limiting, with Cu2+ and Zn2+ transport being a multi-step process involving successive and slower phases controlled by external diffusion, intraparticle diffusion and equilibrium, respectively. Lastly, equilibrium studies revealed that the adsorption of Cu2+ and Zn2+ corresponded with the Langmuir model, suggesting monolayer coverage with maximum adsorption capacities of 67.4 mg g-1 for Cu2+ and 24.1 mg g-1 for Zn2+. Overall, the potential of squid pen protein as an economical filler for β-chitosan-based adsorbents was validated alongside the efficiency of using [BMIM][OAc] for the non-toxic functionalization of β-chitosan. Support of green chemistry principles was evidenced by a high atom economy and low environmental impact, indicating a sustainable method for preparing effective biosorbents.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
期刊最新文献
Taming the diffusiophoretic convective instability in colloidal suspensions. Adhesion study at the interface of a PDMS-elastomer and borosilicate glass-slide: effect of modulus and thickness of the elastomer. Eyring theory for plasticity in amorphous polymers violates Curie's principle. Fabrication of COC micromodels with wettability heterogeneities: method and influence on fluid transport. Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1