Sarah M Maes, Marie L Verheye, Caroline Bouchard, Enora Geslain, Bart Hellemans, Torild Johansen, Magnus Lucassen, Felix C Mark, Anna H Ólafsdóttir, Pauline Snoeijs-Leijonmalm, Daria Zelenina, Filip A M Volckaert, Henrik Christiansen, Hauke Flores
{"title":"Reduced-Representation Sequencing Detects Trans-Arctic Connectivity and Local Adaptation in Polar Cod (Boreogadus saida).","authors":"Sarah M Maes, Marie L Verheye, Caroline Bouchard, Enora Geslain, Bart Hellemans, Torild Johansen, Magnus Lucassen, Felix C Mark, Anna H Ólafsdóttir, Pauline Snoeijs-Leijonmalm, Daria Zelenina, Filip A M Volckaert, Henrik Christiansen, Hauke Flores","doi":"10.1111/mec.17706","DOIUrl":null,"url":null,"abstract":"<p><p>Information on connectivity and genetic structure of marine organisms remains sparse in frontier ecosystems such as the Arctic Ocean. Filling these knowledge gaps becomes increasingly urgent, as the Arctic is undergoing rapid physical, ecological and socio-economic changes. The abundant and widely distributed polar cod (Boreogadus saida) is highly adapted to Arctic waters, and its larvae and juveniles live in close association with sea ice. Through a reduced-representation sequencing approach, this study explored the spatial genetic structure of polar cod at a circum-Arctic scale. Genomic variation was partitioned into neutral and adaptive components to respectively investigate genetic connectivity and local adaptation. Based on 922 high-quality single nucleotide polymorphism (SNP) markers genotyped in 611 polar cod, broad-scale differentiation was detected among three groups: (i) Beaufort -Chukchi seas, (ii) all regions connected by the Transpolar Drift, ranging from the Laptev Sea to Iceland, including the European Arctic and (iii) West Greenland. Patterns of neutral genetic structure suggested broadscale oceanographic and sea ice drift features (i.e., Beaufort Gyre and Transpolar Drift) as important drivers of connectivity. Genomic variation at 35 outlier loci indicated adaptive divergence of the West Greenland and the Beaufort-Chukchi Seas populations, possibly driven by environmental conditions. Sea ice decline and changing ocean currents can alter or disrupt connectivity between polar cod from the three genetic groups, potentially undermining their resilience to climate change, even in putative refugia, such as the Central Arctic Ocean and the Arctic Archipelago.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17706"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17706","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Information on connectivity and genetic structure of marine organisms remains sparse in frontier ecosystems such as the Arctic Ocean. Filling these knowledge gaps becomes increasingly urgent, as the Arctic is undergoing rapid physical, ecological and socio-economic changes. The abundant and widely distributed polar cod (Boreogadus saida) is highly adapted to Arctic waters, and its larvae and juveniles live in close association with sea ice. Through a reduced-representation sequencing approach, this study explored the spatial genetic structure of polar cod at a circum-Arctic scale. Genomic variation was partitioned into neutral and adaptive components to respectively investigate genetic connectivity and local adaptation. Based on 922 high-quality single nucleotide polymorphism (SNP) markers genotyped in 611 polar cod, broad-scale differentiation was detected among three groups: (i) Beaufort -Chukchi seas, (ii) all regions connected by the Transpolar Drift, ranging from the Laptev Sea to Iceland, including the European Arctic and (iii) West Greenland. Patterns of neutral genetic structure suggested broadscale oceanographic and sea ice drift features (i.e., Beaufort Gyre and Transpolar Drift) as important drivers of connectivity. Genomic variation at 35 outlier loci indicated adaptive divergence of the West Greenland and the Beaufort-Chukchi Seas populations, possibly driven by environmental conditions. Sea ice decline and changing ocean currents can alter or disrupt connectivity between polar cod from the three genetic groups, potentially undermining their resilience to climate change, even in putative refugia, such as the Central Arctic Ocean and the Arctic Archipelago.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms