Jubilant Kwame Abledu, Christopher J Herbst, Raphael Brandt, Alen Kocak, Pritam Ghosh, Jacob L Gorenflos López, Kevin Diestelhorst, Stephan Block, Christian Hackenberger, Oliver Seitz, Elena Lopez-Rodriguez, Cengiz Gökeri, Martin Witzenrath, Matthias Ochs, Wolfgang M Kuebler
{"title":"Cell Surface RNA Expression Modulates Alveolar Epithelial Function.","authors":"Jubilant Kwame Abledu, Christopher J Herbst, Raphael Brandt, Alen Kocak, Pritam Ghosh, Jacob L Gorenflos López, Kevin Diestelhorst, Stephan Block, Christian Hackenberger, Oliver Seitz, Elena Lopez-Rodriguez, Cengiz Gökeri, Martin Witzenrath, Matthias Ochs, Wolfgang M Kuebler","doi":"10.1165/rcmb.2024-0284OC","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosylated RNA (glycoRNA) has recently emerged as a novel constituent of the glycocalyx on cell surfaces, yet its biological functions remain largely unexplored. In this report, we present the first analysis of glycoRNA expression and functionality in alveolar epithelial cells. To this end, we optimized new techniques for the detection of glycoRNA on living cell surfaces and in cell membrane-associated RNA samples through in-gel imaging after labeling with fluorescent dye conjugates. Specifically, we used conjugation of Cy5-hydrazide following mild oxidation with sodium periodate for detection of total cell surface sialoglycoRNA. Conjugation of dibenzocyclooctyne-sulfo-Cy5 (DBCO-Sulfo-Cy5) in cells fed with tetraacetylated <i>N</i>-azidoacetyl-mannosamine (Ac<sub>4</sub>ManNAz) or 6-azido-L-fucose (FucAz) detected <i>de novo</i> formed sialoglycoRNA or fucoglycoRNA, respectively. Finally, biotinylated lectins in combination with infrared dye-conjugated streptavidin were used to differentiate between specific glycosidic linkages. Comparisons across primary alveolar epithelial cells and different alveolar-epithelial like cell lines revealed a cell-type specific variation in glycoRNA abundance. Treatment of primary alveolar epithelial cells with an RNase cocktail reduced epithelial surface glycoRNA and was associated with a reduction in trans-epithelial electrical resistance and influenza A viral particle abundance. As such, the present work identifies glycoRNA as a novel component of the alveolar epithelial glycocalyx with potential relevance in epithelial barrier regulation and viral infection.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0284OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glycosylated RNA (glycoRNA) has recently emerged as a novel constituent of the glycocalyx on cell surfaces, yet its biological functions remain largely unexplored. In this report, we present the first analysis of glycoRNA expression and functionality in alveolar epithelial cells. To this end, we optimized new techniques for the detection of glycoRNA on living cell surfaces and in cell membrane-associated RNA samples through in-gel imaging after labeling with fluorescent dye conjugates. Specifically, we used conjugation of Cy5-hydrazide following mild oxidation with sodium periodate for detection of total cell surface sialoglycoRNA. Conjugation of dibenzocyclooctyne-sulfo-Cy5 (DBCO-Sulfo-Cy5) in cells fed with tetraacetylated N-azidoacetyl-mannosamine (Ac4ManNAz) or 6-azido-L-fucose (FucAz) detected de novo formed sialoglycoRNA or fucoglycoRNA, respectively. Finally, biotinylated lectins in combination with infrared dye-conjugated streptavidin were used to differentiate between specific glycosidic linkages. Comparisons across primary alveolar epithelial cells and different alveolar-epithelial like cell lines revealed a cell-type specific variation in glycoRNA abundance. Treatment of primary alveolar epithelial cells with an RNase cocktail reduced epithelial surface glycoRNA and was associated with a reduction in trans-epithelial electrical resistance and influenza A viral particle abundance. As such, the present work identifies glycoRNA as a novel component of the alveolar epithelial glycocalyx with potential relevance in epithelial barrier regulation and viral infection.
期刊介绍:
The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.