首页 > 最新文献

American Journal of Respiratory Cell and Molecular Biology最新文献

英文 中文
A Developmental Step Along the 'Omics Journey. Omics 之旅的发展步骤。
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 DOI: 10.1165/rcmb.2024-0524ED
James S Hagood
{"title":"A Developmental Step Along the 'Omics Journey.","authors":"James S Hagood","doi":"10.1165/rcmb.2024-0524ED","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0524ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endothelial Dysfunction in Pulmonary Hypertension: Does ADP-ribosylation Factor 6-mediated HIF-2α Stabilization Matter? 肺动脉高压的内皮功能障碍:ADP-ribosylation Factor 6 介导的 HIF-2α 稳定是否重要?
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 DOI: 10.1165/rcmb.2024-0465ED
Fenja Knoepp, Simone Kraut, Christine Veith
{"title":"Endothelial Dysfunction in Pulmonary Hypertension: Does ADP-ribosylation Factor 6-mediated HIF-2α Stabilization Matter?","authors":"Fenja Knoepp, Simone Kraut, Christine Veith","doi":"10.1165/rcmb.2024-0465ED","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0465ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cough Variant Asthma: The Asthma Phenotype No One Coughs About. 咳嗽变异型哮喘:无人问津的哮喘表型。
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-20 DOI: 10.1165/rcmb.2024-0517ED
Elizabeth Corteselli, Neil Alexis
{"title":"Cough Variant Asthma: The Asthma Phenotype No One Coughs About.","authors":"Elizabeth Corteselli, Neil Alexis","doi":"10.1165/rcmb.2024-0517ED","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0517ED","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TMEM16A Antagonism: Therapeutic Potential with Desensitization of β-agonist Responsiveness in Asthma. TMEM16A 拮抗剂:哮喘患者对β-受体激动剂反应性脱敏的治疗潜力
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-19 DOI: 10.1165/rcmb.2024-0231OC
Amy Wu, Aisha Kuforiji, Yi Zhang, Dingbang Xu, Jose Perez-Zoghbi, Charles Emala, Jennifer Danielsson

The efficacy of β-agonists in asthma is severely limited by β-adrenoceptor desensitization which results in poorly managed symptoms and refractory bronchoconstriction. Thus, there is a need to identify novel therapeutic pathways and to clarify the relationship between novel therapeutics and functional β-adrenoceptor responsiveness. We have previously demonstrated that acute antagonism of the calcium activated chloride channel, transmembrane member 16A (TMEM16A), relaxes airway smooth muscle (ASM). We sought to determine the efficacy and role of TMEM16A antagonism in the context of desensitization β - adrenoceptor responsiveness. For these studies, we exposed murine tracheal rings on wire myography and precision cut lung slices to contractile mediators in the presence or absence of TMEM16A antagonists and β-agonists with or without prior β-adrenoceptor desensitization. Contractile studies were also performed with human tracheal and bronchial ASM. Finally, the ability of TMEM16A antagonism to prevent desensitization of β2-adrenoceptor-induced cyclic AMP synthesis was measured in human ASM cells. From these studies we demonstrate that acute TMEM16A antagonism is effective in relaxing β-agonist desensitized ASM in central and peripheral murine ASM and human ASM. Furthermore, we demonstrate that chronic pretreatment with TMEM16A antagonists prevents functional desensitization of β-agonist responsiveness in mouse and human upper airways and prevents desensitization of β-agonist-mediated cyclic AMP production in human ASM cells. Taken together, the present study demonstrates a favorable therapeutic profile of TMEM16A antagonism for airway smooth muscle relaxation despite functional desensitization of β-agonist responsiveness which may be a novel therapeutic approach in the face of β-adrenoceptor tachyphylaxis.

β-肾上腺素受体脱敏导致症状控制不佳和难治性支气管收缩,严重限制了β-激动剂对哮喘的疗效。因此,有必要确定新的治疗途径,并阐明新疗法与功能性 β 肾上腺素受体反应性之间的关系。我们以前曾证实,急性拮抗钙激活氯通道跨膜成员 16A(TMEM16A)可松弛气道平滑肌(ASM)。我们试图确定 TMEM16A 拮抗作用在脱敏 β - 肾上腺素受体反应性中的功效和作用。在这些研究中,我们在有或没有 TMEM16A 拮抗剂和 β-拮抗剂、事先进行或未进行 β-肾上腺素受体脱敏的情况下,将小鼠气管环暴露于钢丝肌层上,并将精确切割的肺切片暴露于收缩介质中。还利用人体气管和支气管 ASM 进行了收缩研究。最后,在人 ASM 细胞中测量了 TMEM16A 拮抗剂防止 β2-肾上腺素受体诱导的环 AMP 合成脱敏的能力。通过这些研究,我们证明了急性 TMEM16A 拮抗剂能有效松弛中枢和外周小鼠 ASM 和人类 ASM 中β-受体激动剂脱敏的 ASM。此外,我们还证明,长期使用 TMEM16A 拮抗剂可防止小鼠和人上呼吸道对 β-受体激动剂反应的功能性脱敏,并可防止人 ASM 细胞对 β-受体激动剂介导的环 AMP 生成的脱敏。综上所述,本研究表明,TMEM16A 拮抗剂对气道平滑肌松弛具有良好的治疗作用,尽管会对β-激动剂的反应性产生功能性脱敏,但这可能是面对β-肾上腺素受体过缓的一种新的治疗方法。
{"title":"TMEM16A Antagonism: Therapeutic Potential with Desensitization of β-agonist Responsiveness in Asthma.","authors":"Amy Wu, Aisha Kuforiji, Yi Zhang, Dingbang Xu, Jose Perez-Zoghbi, Charles Emala, Jennifer Danielsson","doi":"10.1165/rcmb.2024-0231OC","DOIUrl":"10.1165/rcmb.2024-0231OC","url":null,"abstract":"<p><p>The efficacy of β-agonists in asthma is severely limited by β-adrenoceptor desensitization which results in poorly managed symptoms and refractory bronchoconstriction. Thus, there is a need to identify novel therapeutic pathways and to clarify the relationship between novel therapeutics and functional β-adrenoceptor responsiveness. We have previously demonstrated that acute antagonism of the calcium activated chloride channel, transmembrane member 16A (TMEM16A), relaxes airway smooth muscle (ASM). We sought to determine the efficacy and role of TMEM16A antagonism in the context of desensitization β - adrenoceptor responsiveness. For these studies, we exposed murine tracheal rings on wire myography and precision cut lung slices to contractile mediators in the presence or absence of TMEM16A antagonists and β-agonists with or without prior β-adrenoceptor desensitization. Contractile studies were also performed with human tracheal and bronchial ASM. Finally, the ability of TMEM16A antagonism to prevent desensitization of β<sub>2</sub>-adrenoceptor-induced cyclic AMP synthesis was measured in human ASM cells. From these studies we demonstrate that acute TMEM16A antagonism is effective in relaxing β-agonist desensitized ASM in central and peripheral murine ASM and human ASM. Furthermore, we demonstrate that chronic pretreatment with TMEM16A antagonists prevents functional desensitization of β-agonist responsiveness in mouse and human upper airways and prevents desensitization of β-agonist-mediated cyclic AMP production in human ASM cells. Taken together, the present study demonstrates a favorable therapeutic profile of TMEM16A antagonism for airway smooth muscle relaxation despite functional desensitization of β-agonist responsiveness which may be a novel therapeutic approach in the face of β-adrenoceptor tachyphylaxis.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ARF6 as a Novel Activator of HIF-2α in Pulmonary Arterial Hypertension. ARF6 是肺动脉高压中 HIF-2α 的新型激活剂
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-18 DOI: 10.1165/rcmb.2024-0149OC
Adam L Fellows, Chien-Nien Chen, Chongyang Xie, Nayana Iyer, Lukas Schmidt, Xiaoke Yin, Luke A Yates, Manuel Mayr, Andrew Cowburn, Lan Zhao, Beata Wojciak-Stothard

ADP-ribosylation factor 6 (ARF6), a GTPase associated with cancer metastasis, is activated in the lung endothelium in pulmonary arterial hypertension (PAH). To identify ARF6-regulated pathways relevant to PAH, we performed a state-of-the-art proteomic analysis of human pulmonary artery endothelial cells (HPAECs) overexpressing the wildtype, constitutively active, fast-cycling and dominant negative mutants of ARF6. The analysis revealed a novel link of ARF6 with hypoxia-inducible factor (HIF), in addition to endocytotic vesicle trafficking, cell proliferation, angiogenesis, oxidative stress and lipid metabolism. Active ARF6 markedly increased expression and activity of HIF-2, critical in PAH, with HIF-1 relatively unaffected. Hypoxic ARF6 activation was a prerequisite for HIF-2 activation and HIF-dependent gene expression in HPAECs, PAH blood-derived late outgrowth endothelial colony forming cells (ECFCs) and hypoxic mouse lungs in vivo. A novel ARF6 inhibitor, chlortetracycline (CTC), reduced hypoxia-induced HIF-2 activation, proliferation and angiogenesis in HPAECs and reduced HIF-2 expression in lung and heart tissues of hypoxic mice. PAH ECFCs showed elevated expression and activity of ARF6 and HIF2, which was attenuated by CTC, and oral CTC attenuated development of PH in chronically hypoxic mice. We identify epidermal growth factor receptor (EGFR) as a direct interactor of ARF6, and EGFR signalling as a crucial mechanism linking ARF6 and HIF activation. In conclusion, we are first to demonstrate a key role of ARF6 in the regulation of HIF-2α activation in vitro and in vivo and show that HIF-2α, a master-regulator of vascular remodelling in PAH, can be targeted by a clinically approved antibiotic chlortetracycline.

ADP-核糖基化因子 6(ARF6)是一种与癌症转移相关的 GTP 酶,它在肺动脉高压(PAH)患者的肺内皮中被激活。为了确定与 PAH 相关的 ARF6 调节通路,我们对过量表达 ARF6 的野生型、组成型活性、快速循环和显性阴性突变体的人肺动脉内皮细胞(HPAECs)进行了最先进的蛋白质组分析。分析发现 ARF6 与缺氧诱导因子(HIF)有新的联系,此外还与内吞囊泡贩运、细胞增殖、血管生成、氧化应激和脂质代谢有关。活性 ARF6 显著增加了对 PAH 至关重要的 HIF-2 的表达和活性,而 HIF-1 则相对不受影响。缺氧 ARF6 激活是 HIF-2 激活和 HIF 依赖性基因在 HPAECs、PAH 血源性晚期生长内皮集落形成细胞(ECFCs)和体内缺氧小鼠肺中表达的先决条件。一种新型 ARF6 抑制剂金霉素(CTC)可减少缺氧诱导的 HIF-2 在 HPAECs 中的激活、增殖和血管生成,并降低缺氧小鼠肺和心脏组织中 HIF-2 的表达。PAH ECFCs 显示 ARF6 和 HIF2 的表达和活性升高,而 CTC 可减轻这种升高,口服 CTC 可减轻慢性缺氧小鼠 PH 的发展。我们发现表皮生长因子受体(EGFR)是 ARF6 的直接相互作用者,EGFR 信号是连接 ARF6 和 HIF 激活的关键机制。总之,我们首次证明了 ARF6 在体外和体内调控 HIF-2α 激活过程中的关键作用,并表明 HIF-2α 是 PAH 中血管重塑的主调控因子,可被临床批准的抗生素金霉素靶向治疗。
{"title":"ARF6 as a Novel Activator of HIF-2α in Pulmonary Arterial Hypertension.","authors":"Adam L Fellows, Chien-Nien Chen, Chongyang Xie, Nayana Iyer, Lukas Schmidt, Xiaoke Yin, Luke A Yates, Manuel Mayr, Andrew Cowburn, Lan Zhao, Beata Wojciak-Stothard","doi":"10.1165/rcmb.2024-0149OC","DOIUrl":"10.1165/rcmb.2024-0149OC","url":null,"abstract":"<p><p>ADP-ribosylation factor 6 (ARF6), a GTPase associated with cancer metastasis, is activated in the lung endothelium in pulmonary arterial hypertension (PAH). To identify ARF6-regulated pathways relevant to PAH, we performed a state-of-the-art proteomic analysis of human pulmonary artery endothelial cells (HPAECs) overexpressing the wildtype, constitutively active, fast-cycling and dominant negative mutants of ARF6. The analysis revealed a novel link of ARF6 with hypoxia-inducible factor (HIF), in addition to endocytotic vesicle trafficking, cell proliferation, angiogenesis, oxidative stress and lipid metabolism. Active ARF6 markedly increased expression and activity of HIF-2, critical in PAH, with HIF-1 relatively unaffected. Hypoxic ARF6 activation was a prerequisite for HIF-2 activation and HIF-dependent gene expression in HPAECs, PAH blood-derived late outgrowth endothelial colony forming cells (ECFCs) and hypoxic mouse lungs <i>in vivo</i>. A novel ARF6 inhibitor, chlortetracycline (CTC), reduced hypoxia-induced HIF-2 activation, proliferation and angiogenesis in HPAECs and reduced HIF-2 expression in lung and heart tissues of hypoxic mice. PAH ECFCs showed elevated expression and activity of ARF6 and HIF2, which was attenuated by CTC, and oral CTC attenuated development of PH in chronically hypoxic mice. We identify epidermal growth factor receptor (EGFR) as a direct interactor of ARF6, and EGFR signalling as a crucial mechanism linking ARF6 and HIF activation. In conclusion, we are first to demonstrate a key role of ARF6 in the regulation of HIF-2α activation <i>in vitro</i> and <i>in vivo</i> and show that HIF-2α, a master-regulator of vascular remodelling in PAH, can be targeted by a clinically approved antibiotic chlortetracycline.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KLF5 Shapes Developing Respiratory Tubules by Inhibiting Actin Asymmetry in Epithelial Cells. KLF5 通过抑制上皮细胞中肌动蛋白的不对称性来塑造发育中的呼吸小管
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-18 DOI: 10.1165/rcmb.2024-0140OC
Qing Li, Yong Liao, Junwei Zeng, Silu Hu, Chunjie Li, Jeffrey A Whitsett, Yi Zheng, Fengming Luo, Chang Xu, Taozhen He, Xinhua Lin, Huajing Wan

Tubulogenesis depends on precise cell shape changes driven by asymmetric tension from the actin cytoskeleton. How actin asymmetry is dynamically controlled to coordinate epithelial cell shape changes required for respiratory tubulogenesis remains unknown. Herein, we unveiled a critical role for the transcription factor KLF5, regulating actin asymmetry, inducing epithelial cell shape changes by balancing RHOA and CDC42 GTPase activity via RICH2. Conditional Klf5 expression or deletion in pulmonary epithelial cells affected apical actin organization and the positioning of apical polarity proteins in cell membranes, disrupting branching and sacculation of respiratory tubules during mouse lung morphogenesis. Increased KLF5 levels were observed in epithelial cells lining dilated tubules in lungs from patients with congenital pulmonary airway malformation (CPAM). Together, our study demonstrates that dynamic regulation of apical actin organization by KLF5 is essential for respiratory tubulogenesis, providing a mechanistic framework for comprehending the morphogenesis of respiratory tubules.

肾小管的生成依赖于由肌动蛋白细胞骨架的不对称张力驱动的精确的细胞形状变化。肌动蛋白的不对称性是如何被动态控制以协调呼吸管生成所需的上皮细胞形状变化的,目前仍是未知数。在这里,我们揭示了转录因子 KLF5 在调节肌动蛋白不对称性方面的关键作用,它通过 RICH2 平衡 RHOA 和 CDC42 GTPase 的活性,诱导上皮细胞形状的改变。肺上皮细胞中条件性 Klf5 表达或缺失会影响顶端肌动蛋白的组织和顶端极性蛋白在细胞膜中的定位,从而在小鼠肺形态发生过程中破坏呼吸小管的分支和囊状结构。在先天性肺气道畸形(CPAM)患者肺部扩张的肺小管内衬上皮细胞中观察到 KLF5 水平升高。总之,我们的研究表明,KLF5对顶端肌动蛋白组织的动态调控对呼吸小管的发生至关重要,为理解呼吸小管的形态发生提供了一个机理框架。
{"title":"KLF5 Shapes Developing Respiratory Tubules by Inhibiting Actin Asymmetry in Epithelial Cells.","authors":"Qing Li, Yong Liao, Junwei Zeng, Silu Hu, Chunjie Li, Jeffrey A Whitsett, Yi Zheng, Fengming Luo, Chang Xu, Taozhen He, Xinhua Lin, Huajing Wan","doi":"10.1165/rcmb.2024-0140OC","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0140OC","url":null,"abstract":"<p><p>Tubulogenesis depends on precise cell shape changes driven by asymmetric tension from the actin cytoskeleton. How actin asymmetry is dynamically controlled to coordinate epithelial cell shape changes required for respiratory tubulogenesis remains unknown. Herein, we unveiled a critical role for the transcription factor KLF5, regulating actin asymmetry, inducing epithelial cell shape changes by balancing RHOA and CDC42 GTPase activity via RICH2. Conditional <i>Klf5</i> expression or deletion in pulmonary epithelial cells affected apical actin organization and the positioning of apical polarity proteins in cell membranes, disrupting branching and sacculation of respiratory tubules during mouse lung morphogenesis. Increased KLF5 levels were observed in epithelial cells lining dilated tubules in lungs from patients with congenital pulmonary airway malformation (CPAM). Together, our study demonstrates that dynamic regulation of apical actin organization by KLF5 is essential for respiratory tubulogenesis, providing a mechanistic framework for comprehending the morphogenesis of respiratory tubules.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal Clusters of ERK Activity Coordinate Cytokine-induced Inflammatory Responses in Human Airway Epithelial Cells. ERK活动的时空集群协调细胞因子诱导的人类气道上皮细胞炎症反应
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-18 DOI: 10.1165/rcmb.2024-0256OC
Nicholaus L DeCuzzi, Daniel Oberbauer, Kenneth J Chmiel, Michael Pargett, Justa M Ferguson, Devan Murphy, Marion Hardy, Abhineet Ram, Amir A Zeki, John G Albeck

Spatially coordinated ERK signaling events ("SPREADs") transmit radially from a central point to adjacent cells via secreted ligands for EGFR and other receptors. SPREADs maintain homeostasis in non-pulmonary epithelia, but it is unknown whether they play a role in the airway epithelium or are dysregulated in inflammatory disease. To address these questions, we measured SPREAD activity with live-cell ERK biosensors in human bronchial epithelial cell lines (HBE1 and 16HBE) and primary human bronchial epithelial (pHBE) cells, in both submerged and biphasic Air-Liquid Interface (ALI) culture conditions (i.e., differentiated cells). Airway epithelial cells were exposed to pro-inflammatory cytokines relevant to asthma and chronic obstructive pulmonary disease (COPD). Type 1 pro-inflammatory cytokines significantly increased the frequency of SPREADs, which coincided with epithelial barrier breakdown in differentiated pHBE cells. Furthermore, SPREADs correlated with IL-6 peptide secretion and the appearance of localized clusters of phospho-STAT3 immunofluorescence. To probe the mechanism of SPREADs, cells were co-treated with pharmacological treatments (gefitinib, tocilizumab, hydrocortisone) or metabolic modulators (insulin, 2-deoxyglucose). Hydrocortisone, inhibitors of receptor signaling, and suppression of metabolic function decreased SPREAD occurrence, implying that pro-inflammatory cytokines and glucose metabolism modulate SPREADs in human airway epithelial cells via secreted EGFR and IL6R ligands. We conclude that spatiotemporal ERK signaling plays a role in barrier homeostasis and dysfunction during inflammation of the airway epithelium. This novel signaling mechanism could be exploited clinically to supplement corticosteroid treatment for asthma and COPD.

空间协调的 ERK 信号事件("SPREADs")通过表皮生长因子受体和其他受体的分泌配体从中心点向邻近细胞进行辐射传输。SPREADs 可维持非肺部上皮细胞的平衡,但它们是否在气道上皮细胞中发挥作用或在炎症性疾病中失调尚不清楚。为了解决这些问题,我们使用活细胞ERK生物传感器测量了人支气管上皮细胞系(HBE1和16HBE)和原代人支气管上皮细胞(pHBE)在浸没和双相气液界面(ALI)培养条件下(即分化细胞)的SPREAD活性。气道上皮细胞暴露于与哮喘和慢性阻塞性肺病(COPD)相关的促炎细胞因子。1 型促炎细胞因子显著增加了 SPREADs 的频率,这与分化 pHBE 细胞的上皮屏障破坏相吻合。此外,SPREADs与IL-6肽分泌和局部磷-STAT3免疫荧光群的出现相关。为了探究SPREADs的机制,细胞与药物治疗(吉非替尼、替西珠单抗、氢化可的松)或代谢调节剂(胰岛素、2-脱氧葡萄糖)共同处理。氢化可的松、受体信号转导抑制剂和代谢功能抑制剂可减少 SPREAD 的发生,这意味着促炎细胞因子和葡萄糖代谢可通过分泌的表皮生长因子受体和 IL6R 配体调节人气道上皮细胞中的 SPREAD。我们的结论是,时空 ERK 信号在气道上皮细胞炎症期间的屏障稳态和功能障碍中发挥作用。临床上可以利用这种新型信号机制来辅助皮质类固醇治疗哮喘和慢性阻塞性肺病。
{"title":"Spatiotemporal Clusters of ERK Activity Coordinate Cytokine-induced Inflammatory Responses in Human Airway Epithelial Cells.","authors":"Nicholaus L DeCuzzi, Daniel Oberbauer, Kenneth J Chmiel, Michael Pargett, Justa M Ferguson, Devan Murphy, Marion Hardy, Abhineet Ram, Amir A Zeki, John G Albeck","doi":"10.1165/rcmb.2024-0256OC","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0256OC","url":null,"abstract":"<p><p>Spatially coordinated ERK signaling events (\"SPREADs\") transmit radially from a central point to adjacent cells via secreted ligands for EGFR and other receptors. SPREADs maintain homeostasis in non-pulmonary epithelia, but it is unknown whether they play a role in the airway epithelium or are dysregulated in inflammatory disease. To address these questions, we measured SPREAD activity with live-cell ERK biosensors in human bronchial epithelial cell lines (HBE1 and 16HBE) and primary human bronchial epithelial (pHBE) cells, in both submerged and biphasic Air-Liquid Interface (ALI) culture conditions (i.e., differentiated cells). Airway epithelial cells were exposed to pro-inflammatory cytokines relevant to asthma and chronic obstructive pulmonary disease (COPD). Type 1 pro-inflammatory cytokines significantly increased the frequency of SPREADs, which coincided with epithelial barrier breakdown in differentiated pHBE cells. Furthermore, SPREADs correlated with IL-6 peptide secretion and the appearance of localized clusters of phospho-STAT3 immunofluorescence. To probe the mechanism of SPREADs, cells were co-treated with pharmacological treatments (gefitinib, tocilizumab, hydrocortisone) or metabolic modulators (insulin, 2-deoxyglucose). Hydrocortisone, inhibitors of receptor signaling, and suppression of metabolic function decreased SPREAD occurrence, implying that pro-inflammatory cytokines and glucose metabolism modulate SPREADs in human airway epithelial cells via secreted EGFR and IL6R ligands. We conclude that spatiotemporal ERK signaling plays a role in barrier homeostasis and dysfunction during inflammation of the airway epithelium. This novel signaling mechanism could be exploited clinically to supplement corticosteroid treatment for asthma and COPD.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Heterogeneity, Parallel and Divergence of Alveolar Macrophages in Humans and Mice. 人类和小鼠肺泡巨噬细胞的异质性、平行性和分歧性
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-13 DOI: 10.1165/rcmb.2024-0315LE
Xin Li, Claudia V Jakubzick
{"title":"The Heterogeneity, Parallel and Divergence of Alveolar Macrophages in Humans and Mice.","authors":"Xin Li, Claudia V Jakubzick","doi":"10.1165/rcmb.2024-0315LE","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0315LE","url":null,"abstract":"","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increased Circulating Extracellular Superoxide Dismutase Attenuates Platelet-Neutrophil Interactions. 增加循环中的细胞外超氧化物歧化酶可减轻血小板与中性粒细胞的相互作用
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-12 DOI: 10.1165/rcmb.2024-0292OC
Christina Sul, Caitlin V Lewis, Janelle Posey, Mariah Jordan, Daniel Colon Hidalgo, Timothy Porfilio, Hanan Elajaili, Genevieve McCormack, Samuel Burciaga, Cassidy Delaney, Eva S Nozik

Acute respiratory distress syndrome (ARDS) is a serious illness accounting for 10% of ICU admissions and high mortality of 31-45% with a paucity of pharmacologic treatment options. Dysregulated inflammation and oxidative stress are hallmark features of ARDS. We previously showed that transgenic mice expressing a naturally occurring polymorphism of the antioxidant enzyme extracellular superoxide dismutase (EC-SOD), are protected against Staphylococcus aureus (S. aureus) pneumonia, acute lung injury, and pulmonary neutrophilia. In this mouse strain, an R213G amino acid substitution leads to lower tissue binding affinity and elevated alveolar and plasma EC-SOD levels, though the redox-regulated mechanisms responsible for protection against S. aureus are not yet elucidated. Neutrophils are recruited to the areas of injury and inflammation, in part by activated platelets, which contain multiple redox-sensitive targets. Thus, we hypothesize that increased circulating EC-SOD due to the EC-SOD R213G variant protects against S. aureus pneumonia by reducing platelet activation and subsequent neutrophil recruitment to the lung. We demonstrate that, compared to WT mice with S. aureus pneumonia, platelet activation, formation of platelet-neutrophil aggregates (PNAs), and influx of neutrophils and PNAs into the lung are decreased in the infected R213G mice. Furthermore, pre-treatment with a MnTE-2-PyP SOD mimetic protects against S. aureus-induced platelet activation, pulmonary neutrophilia, and acute lung injury. Our data highlight the redox regulation of platelet activation as a driver of S. aureus-induced acute lung injury.

急性呼吸窘迫综合征(ARDS)是一种严重疾病,占重症监护病房入院人数的 10%,死亡率高达 31-45%,但药物治疗方法却很少。炎症失调和氧化应激是 ARDS 的标志性特征。我们之前研究发现,表达抗氧化酶细胞外超氧化物歧化酶(EC-SOD)自然发生多态性的转基因小鼠对金黄色葡萄球菌肺炎、急性肺损伤和肺中性粒细胞增多有保护作用。在这种小鼠品系中,R213G 氨基酸置换导致组织结合亲和力降低,肺泡和血浆中的 EC-SOD 水平升高,但氧化还原调控机制对金黄色葡萄球菌的保护作用尚未阐明。中性粒细胞被招募到损伤和炎症区域,部分原因是血小板被激活,而血小板含有多种氧化还原敏感靶点。因此,我们假设,EC-SOD R213G 变体导致的循环中 EC-SOD 增加可通过减少血小板活化及随后中性粒细胞被招募到肺部来预防金黄色葡萄球菌肺炎。我们证明,与患有金黄色葡萄球菌肺炎的 WT 小鼠相比,受感染的 R213G 小鼠的血小板活化、血小板-中性粒细胞聚集体(PNAs)的形成以及中性粒细胞和 PNAs 涌入肺部的情况均有所减少。此外,预处理 MnTE-2-PyP SOD 模拟物可防止金黄色葡萄球菌诱导的血小板活化、肺中性粒细胞增多和急性肺损伤。我们的数据强调了血小板活化的氧化还原调节是金黄色葡萄球菌诱导的急性肺损伤的驱动因素。
{"title":"Increased Circulating Extracellular Superoxide Dismutase Attenuates Platelet-Neutrophil Interactions.","authors":"Christina Sul, Caitlin V Lewis, Janelle Posey, Mariah Jordan, Daniel Colon Hidalgo, Timothy Porfilio, Hanan Elajaili, Genevieve McCormack, Samuel Burciaga, Cassidy Delaney, Eva S Nozik","doi":"10.1165/rcmb.2024-0292OC","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0292OC","url":null,"abstract":"<p><p>Acute respiratory distress syndrome (ARDS) is a serious illness accounting for 10% of ICU admissions and high mortality of 31-45% with a paucity of pharmacologic treatment options. Dysregulated inflammation and oxidative stress are hallmark features of ARDS. We previously showed that transgenic mice expressing a naturally occurring polymorphism of the antioxidant enzyme extracellular superoxide dismutase (EC-SOD), are protected against <i>Staphylococcus aureus (S. aureus)</i> pneumonia, acute lung injury, and pulmonary neutrophilia. In this mouse strain, an R213G amino acid substitution leads to lower tissue binding affinity and elevated alveolar and plasma EC-SOD levels, though the redox-regulated mechanisms responsible for protection against S. aureus are not yet elucidated. Neutrophils are recruited to the areas of injury and inflammation, in part by activated platelets, which contain multiple redox-sensitive targets. Thus, we hypothesize that increased circulating EC-SOD due to the EC-SOD R213G variant protects against <i>S. aureus</i> pneumonia by reducing platelet activation and subsequent neutrophil recruitment to the lung. We demonstrate that, compared to WT mice with <i>S. aureus</i> pneumonia, platelet activation, formation of platelet-neutrophil aggregates (PNAs), and influx of neutrophils and PNAs into the lung are decreased in the infected R213G mice. Furthermore, pre-treatment with a MnTE-2-PyP SOD mimetic protects against S. aureus-induced platelet activation, pulmonary neutrophilia, and acute lung injury. Our data highlight the redox regulation of platelet activation as a driver of <i>S. aureus</i>-induced acute lung injury.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Bi-Steric Inhibitor RMC-5552 Reduces mTORC1 Signaling and Growth in Lymphangioleiomyomatosis. 双酯抑制剂 RMC-5552 可降低 mTORC1 信号转导并促进淋巴管瘤病的生长
IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-12 DOI: 10.1165/rcmb.2024-0242OC
Jilly F Evans, Owen A Ledwell, Yan Tang, Ryan Rue, Alexander R Mukhitov, Rémi Diesler, Susan M Lin, Swaroop V Kanth, Maria C Basil, Edward Cantu, Elizabeth P Henske, Vera P Krymskaya

Mutations in the Tuberous Sclerosis Complex (TSC) genes result in the hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in mesenchymal pulmonary cells. Rapamycin (SirolimusTM), a naturally occurring macrolide, is the only therapeutic approved for women with lymphangioleiomyomatosis (LAM), a progressive, destructive lung disease caused by TSC gene mutations and mTORC1 hyperactivation. However, on cessation of the drug, lung function decline continues. We demonstrated here that pulmonary LAM cancer stem-like cells (SLS) most highly expressed the eukaryotic translation initiation factor 4E (eIF4E)-dependent translation initiation genes. We also showed that the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) gene has the lowest expression in these cells, indicating that the 4E-BP1/eIF4E ratio in LAM SLS cells favors unrestrained eIF4E oncogenic mRNA translation. The bi-steric mTORC1-selective compound RMC-5552 prevented growth of LAM-associated fibroblasts (LAFs) and phosphorylation of proteins in the ribosomal protein S6K1/ribosomal protein S6 (S6K1/S6) and 4E-BP1/eIF4E translation mTORC1-driven pathways, whereas rapamycin only blocked the S6K/S6 axis. Rapamycin inhibition of LAF growth was rapidly reversed, but RMC-5552 inhibition was more durable. RMC-5552, through its potential to eradicate LAM cancer SLS cells, may have therapeutic benefit in LAM and other diseases with mTORC1 hyperactivity.

Tuberous Sclerosis Complex(TSC)基因突变会导致间质肺细胞中雷帕霉素 1(mTORC1)生长途径的机械/哺乳动物靶点过度激活。雷帕霉素(SirolimusTM)是一种天然大环内酯类药物,是唯一获准用于治疗淋巴管瘤(LAM)女性患者的药物,LAM 是一种由 TSC 基因突变和 mTORC1 过度激活引起的进行性破坏性肺部疾病。然而,停药后,肺功能会继续下降。我们在此证明,肺LAM癌干细胞(SLS)最高度表达真核翻译起始因子4E(eIF4E)依赖的翻译起始基因。我们还发现,真核起始因子 4E 结合蛋白 1(4E-BP1)基因在这些细胞中的表达量最低,这表明 LAM SLS 细胞中 4E-BP1/eIF4E 的比例有利于不受限制的 eIF4E 致癌 mRNA 翻译。双甾体 mTORC1 选择性化合物 RMC-5552 阻止了 LAM 相关成纤维细胞(LAFs)的生长以及核糖体蛋白 S6K1/核糖体蛋白 S6(S6K1/S6)和 4E-BP1/eIF4E 翻译 mTORC1 驱动通路中的蛋白磷酸化,而雷帕霉素只阻断了 S6K/S6 轴。雷帕霉素对 LAF 生长的抑制作用会迅速逆转,但 RMC-5552 的抑制作用更为持久。RMC-5552 具有根除 LAM 癌 SLS 细胞的潜力,可能对 LAM 和其他 mTORC1 活性亢进的疾病有治疗作用。
{"title":"The Bi-Steric Inhibitor RMC-5552 Reduces mTORC1 Signaling and Growth in Lymphangioleiomyomatosis.","authors":"Jilly F Evans, Owen A Ledwell, Yan Tang, Ryan Rue, Alexander R Mukhitov, Rémi Diesler, Susan M Lin, Swaroop V Kanth, Maria C Basil, Edward Cantu, Elizabeth P Henske, Vera P Krymskaya","doi":"10.1165/rcmb.2024-0242OC","DOIUrl":"https://doi.org/10.1165/rcmb.2024-0242OC","url":null,"abstract":"<p><p>Mutations in the Tuberous Sclerosis Complex (TSC) genes result in the hyperactivation of the mechanistic/mammalian target of rapamycin 1 (mTORC1) growth pathway in mesenchymal pulmonary cells. Rapamycin (Sirolimus<sup>TM</sup>), a naturally occurring macrolide, is the only therapeutic approved for women with lymphangioleiomyomatosis (LAM), a progressive, destructive lung disease caused by TSC gene mutations and mTORC1 hyperactivation. However, on cessation of the drug, lung function decline continues. We demonstrated here that pulmonary LAM cancer stem-like cells (SLS) most highly expressed the eukaryotic translation initiation factor 4E (eIF4E)-dependent translation initiation genes. We also showed that the eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) gene has the lowest expression in these cells, indicating that the 4E-BP1/eIF4E ratio in LAM SLS cells favors unrestrained eIF4E oncogenic mRNA translation. The bi-steric mTORC1-selective compound RMC-5552 prevented growth of LAM-associated fibroblasts (LAFs) and phosphorylation of proteins in the ribosomal protein S6K1/ribosomal protein S6 (S6K1/S6) and 4E-BP1/eIF4E translation mTORC1-driven pathways, whereas rapamycin only blocked the S6K/S6 axis. Rapamycin inhibition of LAF growth was rapidly reversed, but RMC-5552 inhibition was more durable. RMC-5552, through its potential to eradicate LAM cancer SLS cells, may have therapeutic benefit in LAM and other diseases with mTORC1 hyperactivity.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American Journal of Respiratory Cell and Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1