Automated classification of chest X-rays: a deep learning approach with attention mechanisms.

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING BMC Medical Imaging Pub Date : 2025-03-04 DOI:10.1186/s12880-025-01604-5
Burcu Oltu, Selda Güney, Seniha Esen Yuksel, Berna Dengiz
{"title":"Automated classification of chest X-rays: a deep learning approach with attention mechanisms.","authors":"Burcu Oltu, Selda Güney, Seniha Esen Yuksel, Berna Dengiz","doi":"10.1186/s12880-025-01604-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pulmonary diseases such as COVID-19 and pneumonia, are life-threatening conditions, that require prompt and accurate diagnosis for effective treatment. Chest X-ray (CXR) has become the most common alternative method for detecting pulmonary diseases such as COVID-19, pneumonia, and lung opacity due to their availability, cost-effectiveness, and ability to facilitate comparative analysis. However, the interpretation of CXRs is a challenging task.</p><p><strong>Methods: </strong>This study presents an automated deep learning (DL) model that outperforms multiple state-of-the-art methods in diagnosing COVID-19, Lung Opacity, and Viral Pneumonia. Using a dataset of 21,165 CXRs, the proposed framework introduces a seamless combination of the Vision Transformer (ViT) for capturing long-range dependencies, DenseNet201 for powerful feature extraction, and global average pooling (GAP) for retaining critical spatial details. This combination results in a robust classification system, achieving remarkable accuracy.</p><p><strong>Results: </strong>The proposed methodology delivers outstanding results across all categories: achieving 99.4% accuracy and an F1-score of 98.43% for COVID-19, 96.45% accuracy and an F1-score of 93.64% for Lung Opacity, 99.63% accuracy and an F1-score of 97.05% for Viral Pneumonia, and 95.97% accuracy with an F1-score of 95.87% for Normal subjects.</p><p><strong>Conclusion: </strong>The proposed framework achieves a remarkable overall accuracy of 97.87%, surpassing several state-of-the-art methods with reproducible and objective outcomes. To ensure robustness and minimize variability in train-test splits, our study employs five-fold cross-validation, providing reliable and consistent performance evaluation. For transparency and to facilitate future comparisons, the specific training and testing splits have been made publicly accessible. Furthermore, Grad-CAM-based visualizations are integrated to enhance the interpretability of the model, offering valuable insights into its decision-making process. This innovative framework not only boosts classification accuracy but also sets a new benchmark in CXR-based disease diagnosis.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"71"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877751/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-025-01604-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pulmonary diseases such as COVID-19 and pneumonia, are life-threatening conditions, that require prompt and accurate diagnosis for effective treatment. Chest X-ray (CXR) has become the most common alternative method for detecting pulmonary diseases such as COVID-19, pneumonia, and lung opacity due to their availability, cost-effectiveness, and ability to facilitate comparative analysis. However, the interpretation of CXRs is a challenging task.

Methods: This study presents an automated deep learning (DL) model that outperforms multiple state-of-the-art methods in diagnosing COVID-19, Lung Opacity, and Viral Pneumonia. Using a dataset of 21,165 CXRs, the proposed framework introduces a seamless combination of the Vision Transformer (ViT) for capturing long-range dependencies, DenseNet201 for powerful feature extraction, and global average pooling (GAP) for retaining critical spatial details. This combination results in a robust classification system, achieving remarkable accuracy.

Results: The proposed methodology delivers outstanding results across all categories: achieving 99.4% accuracy and an F1-score of 98.43% for COVID-19, 96.45% accuracy and an F1-score of 93.64% for Lung Opacity, 99.63% accuracy and an F1-score of 97.05% for Viral Pneumonia, and 95.97% accuracy with an F1-score of 95.87% for Normal subjects.

Conclusion: The proposed framework achieves a remarkable overall accuracy of 97.87%, surpassing several state-of-the-art methods with reproducible and objective outcomes. To ensure robustness and minimize variability in train-test splits, our study employs five-fold cross-validation, providing reliable and consistent performance evaluation. For transparency and to facilitate future comparisons, the specific training and testing splits have been made publicly accessible. Furthermore, Grad-CAM-based visualizations are integrated to enhance the interpretability of the model, offering valuable insights into its decision-making process. This innovative framework not only boosts classification accuracy but also sets a new benchmark in CXR-based disease diagnosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
期刊最新文献
Analysis of features of papillary thyroid carcinoma on color Doppler ultrasound images: implications for lymph node metastasis. LoG-staging: a rectal cancer staging method with LoG operator based on maximization of mutual information. Magnetic resonance diffusion-derived vessel density (DDVD) as a valuable tissue perfusion biomarker for isocitrate dehydrogenase genotyping in diffuse gliomas. MTMU: Multi-domain Transformation based Mamba-UNet designed for unruptured intracranial aneurysm segmentation. Relationship between MRI features and HIF-1α, GLUT1 and Ki-67 expression in pituitary adenoma with cystic degeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1