Comprehensive characterization and expression profiling of sucrose phosphate synthase (SPS) and sucrose synthase (SUS) family in Cucumis melo under the application of nitrogen and potassium.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2025-03-05 DOI:10.1186/s12870-025-06308-0
Iftikhar Hussain Shah, Muhammad Aamir Manzoor, Muhammad Azam, Wu Jinhui, Xuyang Li, Asad Rehman, Pengli Li, Yidong Zhang, Qingliang Niu, Liying Chang
{"title":"Comprehensive characterization and expression profiling of sucrose phosphate synthase (SPS) and sucrose synthase (SUS) family in Cucumis melo under the application of nitrogen and potassium.","authors":"Iftikhar Hussain Shah, Muhammad Aamir Manzoor, Muhammad Azam, Wu Jinhui, Xuyang Li, Asad Rehman, Pengli Li, Yidong Zhang, Qingliang Niu, Liying Chang","doi":"10.1186/s12870-025-06308-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sugars are not only important biomacromolecules that play vital roles in plant growth, development and environmental stress tolerance, but they also provide carbon skeletons for the synthesis of other macromolecules, such as proteins and nucleic acids. Sugar-related proteins play key roles in the movement of sugars from source tissues (such as leaves) to sink tissues (such as fruits), ultimately influencing fruit development. However, the evolutionary dynamics of this important sugar-related gene family in the Cucumis melo (C.melo) crop are still unknown, and the functional differentiation of melon genes remains unclear.</p><p><strong>Results: </strong>To understand the sucrose metabolism in C. melo we identified the sugar base protein by bioinformatics tools and their expression changes under nitrogen and potassium fertilization. Sucrose phosphate synthase (SPS) and sucrose synthase (SUS) are key sugar-based transfer enzymes that play a vital role in sugar accumulation. However, to date, the evolutionary history and functional characteristics of sugar-related protein in C. melo remain unknown. Therefore, in this work, we investigated six SPS genes and four SUS genes from C. melo, along with the conserved domain of SUS proteins of Arabidopsis thaliana. Phylogeny and structural features demonstrated that SPS and SUS genes were categorized into four subfamilies (I to IV) and had non-uniform form distribution across the seven melon chromosomes. Moreover, the functional divergence between clades was shown by gene structure and conserved motifs. In C.melo, transposed duplication events have been essential to the growth and development of the sugar gene family. Analysis of the upstream regions showed growth-promoting elements that could be targeted to manage various stress conditions through a variety of trans-acting factors involving sugar metabolism. Moreover, the target of microRNAs revealed that miRNAs have a role in the development and control of sugar genes. Furthermore, expression profiling revealed the differential expression of these genes during fruit developmental stages.</p><p><strong>Conclusion: </strong>This work established the foundational knowledge to investigate the function and mechanism of sucrose accumulation in fruit.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"285"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881465/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06308-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Sugars are not only important biomacromolecules that play vital roles in plant growth, development and environmental stress tolerance, but they also provide carbon skeletons for the synthesis of other macromolecules, such as proteins and nucleic acids. Sugar-related proteins play key roles in the movement of sugars from source tissues (such as leaves) to sink tissues (such as fruits), ultimately influencing fruit development. However, the evolutionary dynamics of this important sugar-related gene family in the Cucumis melo (C.melo) crop are still unknown, and the functional differentiation of melon genes remains unclear.

Results: To understand the sucrose metabolism in C. melo we identified the sugar base protein by bioinformatics tools and their expression changes under nitrogen and potassium fertilization. Sucrose phosphate synthase (SPS) and sucrose synthase (SUS) are key sugar-based transfer enzymes that play a vital role in sugar accumulation. However, to date, the evolutionary history and functional characteristics of sugar-related protein in C. melo remain unknown. Therefore, in this work, we investigated six SPS genes and four SUS genes from C. melo, along with the conserved domain of SUS proteins of Arabidopsis thaliana. Phylogeny and structural features demonstrated that SPS and SUS genes were categorized into four subfamilies (I to IV) and had non-uniform form distribution across the seven melon chromosomes. Moreover, the functional divergence between clades was shown by gene structure and conserved motifs. In C.melo, transposed duplication events have been essential to the growth and development of the sugar gene family. Analysis of the upstream regions showed growth-promoting elements that could be targeted to manage various stress conditions through a variety of trans-acting factors involving sugar metabolism. Moreover, the target of microRNAs revealed that miRNAs have a role in the development and control of sugar genes. Furthermore, expression profiling revealed the differential expression of these genes during fruit developmental stages.

Conclusion: This work established the foundational knowledge to investigate the function and mechanism of sucrose accumulation in fruit.

Clinical trial number: Not applicable.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
Antioxidant capacity, biochemical composition, and mineral composition of leaves in two apple species (Malus domestica Borkh. and M. kirghisorum Al. Fed. & Fed.). Differential effects of exogenous VOCs on the growth and stress responses of Cunninghamia lanceolata seedlings under low phosphorus. Genome-wide characterization of effector proteins in Fusarium zanthoxyli and their effects on plant's innate immunity responses. The CGA1-SNAT regulatory module potentially contributes to cytokinin-mediated melatonin biosynthesis and drought tolerance in wheat. Systematic identification of R2R3-MYB S6 subfamily genes in Brassicaceae and its role in anthocyanin biosynthesis in Brassica crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1