Seed coat transcriptomic profiling of 5-593, a genotype important for genetic studies of seed coat color and patterning in common bean (Phaseolus vulgaris L.).

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2025-03-05 DOI:10.1186/s12870-025-06282-7
Jayanta Roy, Avinash Sreedasyam, Caroline Osborne, Rian Lee, Phillip E McClean
{"title":"Seed coat transcriptomic profiling of 5-593, a genotype important for genetic studies of seed coat color and patterning in common bean (Phaseolus vulgaris L.).","authors":"Jayanta Roy, Avinash Sreedasyam, Caroline Osborne, Rian Lee, Phillip E McClean","doi":"10.1186/s12870-025-06282-7","DOIUrl":null,"url":null,"abstract":"<p><p>Common bean (Phaseolus vulgaris L.) market classes have distinct seed coat colors, which are directly related to the diverse flavonoids found in the mature seed coat. To understand and elucidate the molecular mechanisms underlying the regulation of seed coat color, RNA-Seq data was collected from the black bean 5-593 and used for a differential gene expression and enrichment analysis from four different seed coat color development stages. 5-593 carries dominant alleles for 10 of the 11 major genes that control seed coat color and expression and has historically been used to develop introgression lines used for seed coat genetic analysis. Pairwise comparison among the four stages identified 6,294 differentially expressed genes (DEGs) varying from 508 to 5,780 DEGs depending on the compared stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction comprised the principal pathways expressed during bean seed coat pigment development. Transcriptome analysis suggested that most structural genes for flavonoid biosynthesis and some potential regulatory genes were significantly differentially expressed. Further studies detected 29 DEGs as important candidate genes governing the key enzymatic flavonoid biosynthetic pathways for common bean seed coat color development. Additionally, four gene models, Pv5-593.02G016100, 593.02G078700, Pv5-593.02G090900, and Pv5-593.06G121300, encode MYB-like transcription factor family protein were identified as strong candidate regulatory genes in anthocyanin biosynthesis which could regulate the expression levels of some important structural genes in flavonoid biosynthesis pathway. These findings provide a framework to draw new insights into the molecular networks underlying common bean seed coat pigment development.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"284"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881399/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06282-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Common bean (Phaseolus vulgaris L.) market classes have distinct seed coat colors, which are directly related to the diverse flavonoids found in the mature seed coat. To understand and elucidate the molecular mechanisms underlying the regulation of seed coat color, RNA-Seq data was collected from the black bean 5-593 and used for a differential gene expression and enrichment analysis from four different seed coat color development stages. 5-593 carries dominant alleles for 10 of the 11 major genes that control seed coat color and expression and has historically been used to develop introgression lines used for seed coat genetic analysis. Pairwise comparison among the four stages identified 6,294 differentially expressed genes (DEGs) varying from 508 to 5,780 DEGs depending on the compared stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction comprised the principal pathways expressed during bean seed coat pigment development. Transcriptome analysis suggested that most structural genes for flavonoid biosynthesis and some potential regulatory genes were significantly differentially expressed. Further studies detected 29 DEGs as important candidate genes governing the key enzymatic flavonoid biosynthetic pathways for common bean seed coat color development. Additionally, four gene models, Pv5-593.02G016100, 593.02G078700, Pv5-593.02G090900, and Pv5-593.06G121300, encode MYB-like transcription factor family protein were identified as strong candidate regulatory genes in anthocyanin biosynthesis which could regulate the expression levels of some important structural genes in flavonoid biosynthesis pathway. These findings provide a framework to draw new insights into the molecular networks underlying common bean seed coat pigment development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
Antioxidant capacity, biochemical composition, and mineral composition of leaves in two apple species (Malus domestica Borkh. and M. kirghisorum Al. Fed. & Fed.). Differential effects of exogenous VOCs on the growth and stress responses of Cunninghamia lanceolata seedlings under low phosphorus. Genome-wide characterization of effector proteins in Fusarium zanthoxyli and their effects on plant's innate immunity responses. The CGA1-SNAT regulatory module potentially contributes to cytokinin-mediated melatonin biosynthesis and drought tolerance in wheat. Systematic identification of R2R3-MYB S6 subfamily genes in Brassicaceae and its role in anthocyanin biosynthesis in Brassica crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1