Emily J MacKay, Shir Goldfinger, Trevor J Chan, Rachel H Grasfield, Vikram J Eswar, Kelly Li, Quy Cao, Alison M Pouch
{"title":"Automated structured data extraction from intraoperative echocardiography reports using large language models.","authors":"Emily J MacKay, Shir Goldfinger, Trevor J Chan, Rachel H Grasfield, Vikram J Eswar, Kelly Li, Quy Cao, Alison M Pouch","doi":"10.1016/j.bja.2025.01.028","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Consensus-based large language model (LLM) ensembles might provide an automated solution for extracting structured data from unstructured text in echocardiography reports.</p><p><strong>Methods: </strong>This cross-sectional study utilised 600 intraoperative transoesophageal reports (100 for prompt engineering; 500 for testing) randomly sampled from 7106 adult patients undergoing cardiac surgery at two hospitals within the University of Pennsylvania Healthcare System. Three echocardiographic parameters (left ventricular ejection fraction, right ventricular systolic function, and tricuspid regurgitation) were extracted from both the presurgical and postsurgical sections of the reports. LLM ensembles were generated using five open-source LLMs and four voting strategies: (1) unanimous (five out of five in agreement); (2) supermajority (four or more of five in agreement); (3) majority (three or more of five in agreement); and (4) plurality (two or more of five in agreement). Returned LLM ensemble responses were compared with the reference standard dataset to calculate raw accuracy, consensus accuracy, error rate, and yield.</p><p><strong>Results: </strong>Of the four LLM ensembles, the unanimous LLM ensemble achieved the highest consensus accuracies (99.4% presurgical; 97.9% postsurgical) and the lowest error rates (0.6% presurgical; 2.1% postsurgical) but had the lowest data extraction yields (81.7% presurgical; 80.5% postsurgical) and the lowest raw accuracies (81.2% presurgical; 78.9% postsurgical). In contrast, the plurality LLM ensemble achieved the highest raw accuracies (96.1% presurgical; 93.7% postsurgical) and the highest data extraction yields (99.4% presurgical; 98.9% postsurgical) but had the lowest consensus accuracies (96.7% presurgical; 94.7% postsurgical) and highest error rates (3.3% presurgical; 5.3% postsurgical).</p><p><strong>Conclusions: </strong>A consensus-based LLM ensemble successfully generated structured data from unstructured text contained in intraoperative transoesophageal reports.</p>","PeriodicalId":9250,"journal":{"name":"British journal of anaesthesia","volume":" ","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British journal of anaesthesia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bja.2025.01.028","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Consensus-based large language model (LLM) ensembles might provide an automated solution for extracting structured data from unstructured text in echocardiography reports.
Methods: This cross-sectional study utilised 600 intraoperative transoesophageal reports (100 for prompt engineering; 500 for testing) randomly sampled from 7106 adult patients undergoing cardiac surgery at two hospitals within the University of Pennsylvania Healthcare System. Three echocardiographic parameters (left ventricular ejection fraction, right ventricular systolic function, and tricuspid regurgitation) were extracted from both the presurgical and postsurgical sections of the reports. LLM ensembles were generated using five open-source LLMs and four voting strategies: (1) unanimous (five out of five in agreement); (2) supermajority (four or more of five in agreement); (3) majority (three or more of five in agreement); and (4) plurality (two or more of five in agreement). Returned LLM ensemble responses were compared with the reference standard dataset to calculate raw accuracy, consensus accuracy, error rate, and yield.
Results: Of the four LLM ensembles, the unanimous LLM ensemble achieved the highest consensus accuracies (99.4% presurgical; 97.9% postsurgical) and the lowest error rates (0.6% presurgical; 2.1% postsurgical) but had the lowest data extraction yields (81.7% presurgical; 80.5% postsurgical) and the lowest raw accuracies (81.2% presurgical; 78.9% postsurgical). In contrast, the plurality LLM ensemble achieved the highest raw accuracies (96.1% presurgical; 93.7% postsurgical) and the highest data extraction yields (99.4% presurgical; 98.9% postsurgical) but had the lowest consensus accuracies (96.7% presurgical; 94.7% postsurgical) and highest error rates (3.3% presurgical; 5.3% postsurgical).
Conclusions: A consensus-based LLM ensemble successfully generated structured data from unstructured text contained in intraoperative transoesophageal reports.
期刊介绍:
The British Journal of Anaesthesia (BJA) is a prestigious publication that covers a wide range of topics in anaesthesia, critical care medicine, pain medicine, and perioperative medicine. It aims to disseminate high-impact original research, spanning fundamental, translational, and clinical sciences, as well as clinical practice, technology, education, and training. Additionally, the journal features review articles, notable case reports, correspondence, and special articles that appeal to a broader audience.
The BJA is proudly associated with The Royal College of Anaesthetists, The College of Anaesthesiologists of Ireland, and The Hong Kong College of Anaesthesiologists. This partnership provides members of these esteemed institutions with access to not only the BJA but also its sister publication, BJA Education. It is essential to note that both journals maintain their editorial independence.
Overall, the BJA offers a diverse and comprehensive platform for anaesthetists, critical care physicians, pain specialists, and perioperative medicine practitioners to contribute and stay updated with the latest advancements in their respective fields.