The interplay between epigenomic and transcriptomic variation during ecotype divergence in stickleback.

IF 4.4 1区 生物学 Q1 BIOLOGY BMC Biology Pub Date : 2025-03-05 DOI:10.1186/s12915-025-02176-0
Man Luo, Junjie Zhao, Juha Merilä, Rowan D H Barrett, Baocheng Guo, Juntao Hu
{"title":"The interplay between epigenomic and transcriptomic variation during ecotype divergence in stickleback.","authors":"Man Luo, Junjie Zhao, Juha Merilä, Rowan D H Barrett, Baocheng Guo, Juntao Hu","doi":"10.1186/s12915-025-02176-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Populations colonizing contrasting environments are likely to undergo adaptive divergence and evolve ecotypes with locally adapted phenotypes. While diverse molecular mechanisms underlying ecotype divergence have been identified, less is known about their interplay and degree of divergence.</p><p><strong>Results: </strong>Here we integrated epigenomic and transcriptomic data to explore the interactions among gene expression, alternative splicing, DNA methylation, and microRNA expression to gauge the extent to which patterns of divergence at the four molecular levels are aligned in a case of postglacial divergence between marine and freshwater ecotypes of nine-spined sticklebacks (Pungitius pungitius). Despite significant genome-wide associations between epigenomic and transcriptomic variation, we found largely non-parallel patterns of ecotype divergence across epigenomic and transcriptomic levels, with predominantly nonoverlapping (ranging from 43.40 to 87.98%) sets of differentially expressed, spliced and methylated genes, and candidate genes targeted by differentially expressed miRNA between the ecotypes. Furthermore, we found significant variation in the extent of ecotype divergence across different molecular mechanisms, with differential methylation and differential splicing showing the highest and lowest extent of divergence between ecotypes, respectively. Finally, we found a significant enrichment of genes associated with ecotype divergence in differential methylation.</p><p><strong>Conclusions: </strong>Our results suggest a nuanced relationship between epigenomic and transcriptomic processes, with alignment at the genome-wide level masking relatively independent effects of different molecular mechanisms on ecotype divergence at the gene level.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"70"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881503/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02176-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Populations colonizing contrasting environments are likely to undergo adaptive divergence and evolve ecotypes with locally adapted phenotypes. While diverse molecular mechanisms underlying ecotype divergence have been identified, less is known about their interplay and degree of divergence.

Results: Here we integrated epigenomic and transcriptomic data to explore the interactions among gene expression, alternative splicing, DNA methylation, and microRNA expression to gauge the extent to which patterns of divergence at the four molecular levels are aligned in a case of postglacial divergence between marine and freshwater ecotypes of nine-spined sticklebacks (Pungitius pungitius). Despite significant genome-wide associations between epigenomic and transcriptomic variation, we found largely non-parallel patterns of ecotype divergence across epigenomic and transcriptomic levels, with predominantly nonoverlapping (ranging from 43.40 to 87.98%) sets of differentially expressed, spliced and methylated genes, and candidate genes targeted by differentially expressed miRNA between the ecotypes. Furthermore, we found significant variation in the extent of ecotype divergence across different molecular mechanisms, with differential methylation and differential splicing showing the highest and lowest extent of divergence between ecotypes, respectively. Finally, we found a significant enrichment of genes associated with ecotype divergence in differential methylation.

Conclusions: Our results suggest a nuanced relationship between epigenomic and transcriptomic processes, with alignment at the genome-wide level masking relatively independent effects of different molecular mechanisms on ecotype divergence at the gene level.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
期刊最新文献
Another tail of two sites: activation of the Notch ligand Delta by Mindbomb1. The circular RNA circbabo(5,6,7,8S) regulates lipid metabolism and neuronal integrity via TGF-β/ROS/JNK/SREBP signaling axis in Drosophila. The interplay between epigenomic and transcriptomic variation during ecotype divergence in stickleback. Switching of OAS1 splicing isoforms overcomes SNP-derived vulnerability to SARS-CoV-2 infection. CTCF-mediated insulation and chromatin environment modulate Car5b escape from X inactivation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1