E L Tejada-Gutiérrez, J Mateo Fornés, F Solsona, R Alves
{"title":"ForestForward: visualizing and accessing integrated world forest data from the last 50 years.","authors":"E L Tejada-Gutiérrez, J Mateo Fornés, F Solsona, R Alves","doi":"10.1093/database/baaf018","DOIUrl":null,"url":null,"abstract":"<p><p>Mitigating the effects of environmental exploitation on forests requires robust data analysis tools to inform sustainable management strategies and enhance ecosystem resilience. Access to extensive, integrated plant biodiversity data, spanning decades, is essential for this purpose. However, such data are often fragmented across diverse datasets with varying standards, posing two key challenges: first, integrating these datasets into a unified, well-structured data warehouse, and second, handling the vast volume of data using big data technologies to analyze and monitor the temporal evolution of ecosystems. To address these challenges, we developed and used an extract, transform, and load (ETL) protocol that curated and integrates 4482 forestry datasets from around the world, dating back to the 18th century, into a 100-GB data warehouse containing over 172 million records sourced from the Global Biodiversity Information Facility repository. We implemented Python scripts and a NoSQL MongoDB database to streamline and automate the ETL process, using the data warehouse to create the ForestForward web platform. ForestForward is a free, user-friendly application developed using the Django framework, which enables users to consult, download, and visualize the curated data. The platform allows users to explore data layers by year and observe the temporal evolution of ecosystems through visual representations. Database URL: https://forestforward.udl.cat.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2025 ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879282/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baaf018","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitigating the effects of environmental exploitation on forests requires robust data analysis tools to inform sustainable management strategies and enhance ecosystem resilience. Access to extensive, integrated plant biodiversity data, spanning decades, is essential for this purpose. However, such data are often fragmented across diverse datasets with varying standards, posing two key challenges: first, integrating these datasets into a unified, well-structured data warehouse, and second, handling the vast volume of data using big data technologies to analyze and monitor the temporal evolution of ecosystems. To address these challenges, we developed and used an extract, transform, and load (ETL) protocol that curated and integrates 4482 forestry datasets from around the world, dating back to the 18th century, into a 100-GB data warehouse containing over 172 million records sourced from the Global Biodiversity Information Facility repository. We implemented Python scripts and a NoSQL MongoDB database to streamline and automate the ETL process, using the data warehouse to create the ForestForward web platform. ForestForward is a free, user-friendly application developed using the Django framework, which enables users to consult, download, and visualize the curated data. The platform allows users to explore data layers by year and observe the temporal evolution of ecosystems through visual representations. Database URL: https://forestforward.udl.cat.
期刊介绍:
Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data.
Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.