Ward Hendrix, Nils Hendrix, Ernst T Scholten, Bram van Ginneken, Mathias Prokop, Matthieu Rutten, Colin Jacobs
{"title":"Artificial intelligence for the detection of airway nodules in chest CT scans.","authors":"Ward Hendrix, Nils Hendrix, Ernst T Scholten, Bram van Ginneken, Mathias Prokop, Matthieu Rutten, Colin Jacobs","doi":"10.1007/s00330-025-11468-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Incidental airway tumors are rare and can easily be overlooked on chest CT, especially at an early stage. Therefore, we developed and assessed a deep learning-based artificial intelligence (AI) system for detecting and localizing airway nodules.</p><p><strong>Materials and methods: </strong>At a single academic hospital, we retrospectively analyzed cancer diagnoses and radiology reports from patients who received a chest or chest-abdomen CT scan between 2004 and 2020 to find cases presenting as airway nodules. Primary cancers were verified through bronchoscopy with biopsy or cytologic testing. The malignancy status of other nodules was confirmed with bronchoscopy only or follow-up CT scans if such evidence was unavailable. An AI system was trained and evaluated with a ten-fold cross-validation procedure. The performance of the system was assessed with a free-response receiver operating characteristic curve.</p><p><strong>Results: </strong>We identified 160 patients with airway nodules (median age of 64 years [IQR: 54-70], 58 women) and added a random sample of 160 patients without airway nodules (median age of 60 years [IQR: 48-69], 80 women). The sensitivity of the AI system was 75.1% (95% CI: 67.6-81.6%) for detecting all nodules with an average number of false positives per scan of 0.25 in negative patients and 0.56 in positive patients. At the same operating point, the sensitivity was 79.0% (95% CI: 70.4-86.6%) for the subset of tumors. A subgroup analysis showed that the system detected the majority of subtle tumors.</p><p><strong>Conclusion: </strong>The AI system detects most airway nodules on chest CT with an acceptable false positive rate.</p><p><strong>Key points: </strong>Question Incidental airway tumors are rare and are susceptible to being overlooked on chest CT. Findings An AI system can detect most benign and malignant airway nodules with an acceptable false positive rate, including nodules that have very subtle features. Clinical relevance An AI system shows potential for supporting radiologists in detecting airway tumors.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-025-11468-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Incidental airway tumors are rare and can easily be overlooked on chest CT, especially at an early stage. Therefore, we developed and assessed a deep learning-based artificial intelligence (AI) system for detecting and localizing airway nodules.
Materials and methods: At a single academic hospital, we retrospectively analyzed cancer diagnoses and radiology reports from patients who received a chest or chest-abdomen CT scan between 2004 and 2020 to find cases presenting as airway nodules. Primary cancers were verified through bronchoscopy with biopsy or cytologic testing. The malignancy status of other nodules was confirmed with bronchoscopy only or follow-up CT scans if such evidence was unavailable. An AI system was trained and evaluated with a ten-fold cross-validation procedure. The performance of the system was assessed with a free-response receiver operating characteristic curve.
Results: We identified 160 patients with airway nodules (median age of 64 years [IQR: 54-70], 58 women) and added a random sample of 160 patients without airway nodules (median age of 60 years [IQR: 48-69], 80 women). The sensitivity of the AI system was 75.1% (95% CI: 67.6-81.6%) for detecting all nodules with an average number of false positives per scan of 0.25 in negative patients and 0.56 in positive patients. At the same operating point, the sensitivity was 79.0% (95% CI: 70.4-86.6%) for the subset of tumors. A subgroup analysis showed that the system detected the majority of subtle tumors.
Conclusion: The AI system detects most airway nodules on chest CT with an acceptable false positive rate.
Key points: Question Incidental airway tumors are rare and are susceptible to being overlooked on chest CT. Findings An AI system can detect most benign and malignant airway nodules with an acceptable false positive rate, including nodules that have very subtle features. Clinical relevance An AI system shows potential for supporting radiologists in detecting airway tumors.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.