Changes in importin levels promote nuclear proteasomal degradation of cell cycle-related proteins during THP-1 monocyte-to-macrophage differentiation.

IF 3.5 4区 生物学 Q1 Biochemistry, Genetics and Molecular Biology FEBS Letters Pub Date : 2025-03-05 DOI:10.1002/1873-3468.70020
Makoto Kimura, Yutaka Ogawa, Shoko Motohashi, Naoko Imamoto
{"title":"Changes in importin levels promote nuclear proteasomal degradation of cell cycle-related proteins during THP-1 monocyte-to-macrophage differentiation.","authors":"Makoto Kimura, Yutaka Ogawa, Shoko Motohashi, Naoko Imamoto","doi":"10.1002/1873-3468.70020","DOIUrl":null,"url":null,"abstract":"<p><p>Importin family nucleocytoplasmic transport receptors share thousands of cargo proteins. To elucidate cell regulatory mechanisms via transport regulation, we analyzed the levels of transport receptors by western blotting and quantified the total cellular and nuclear proteins during monocyte-to-macrophage differentiation of THP-1 cells using mass spectrometry. Importin-α1 decreased and importin-α5 increased during the differentiation. Cell cycle-related proteins decreased in both whole cells and nuclei, and proteasome-related proteins increased in the nuclei but not in whole cells. During the differentiation with importin-α1 overexpression, the nuclear levels of some cell division-related proteins recovered, and with importin-α5 knockdown, proteasome assembly factors decreased in the nuclei. In this differentiation, transport receptors reduce unnecessary nuclear proteins by abating import and promoting nuclear proteasomal degradation. This study demonstrates the importance of global nuclear transport control in cell regulation.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.70020","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Importin family nucleocytoplasmic transport receptors share thousands of cargo proteins. To elucidate cell regulatory mechanisms via transport regulation, we analyzed the levels of transport receptors by western blotting and quantified the total cellular and nuclear proteins during monocyte-to-macrophage differentiation of THP-1 cells using mass spectrometry. Importin-α1 decreased and importin-α5 increased during the differentiation. Cell cycle-related proteins decreased in both whole cells and nuclei, and proteasome-related proteins increased in the nuclei but not in whole cells. During the differentiation with importin-α1 overexpression, the nuclear levels of some cell division-related proteins recovered, and with importin-α5 knockdown, proteasome assembly factors decreased in the nuclei. In this differentiation, transport receptors reduce unnecessary nuclear proteins by abating import and promoting nuclear proteasomal degradation. This study demonstrates the importance of global nuclear transport control in cell regulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
FEBS Letters
FEBS Letters 生物-生化与分子生物学
CiteScore
7.00
自引率
2.90%
发文量
303
审稿时长
1.0 months
期刊介绍: FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.
期刊最新文献
G protein-coupled oestrogen receptor regulates branched-chain amino acid metabolism through c-Jun N-terminal kinase. Changes in importin levels promote nuclear proteasomal degradation of cell cycle-related proteins during THP-1 monocyte-to-macrophage differentiation. PDRG1 is essential for early plant development as a component of the prefoldin-like complex. Taurine promotes glucagon-like peptide-1 secretion in enteroendocrine L cells. The intracellular domain of TLR2 is capable of high-affinity Zn binding: possible outcomes for the receptor activation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1