{"title":"Establishment of an indirect ELISA detection method for porcine reproductive and respiratory syndrome virus NSP4.","authors":"Mengmeng Zhao, Chen Lv, Jiankun Pang, Zhiyu Yang, Huiyang Sha","doi":"10.3389/fmicb.2025.1549008","DOIUrl":null,"url":null,"abstract":"<p><p>The non-structural protein 4 (NSP4) of porcine reproductive and respiratory syndrome virus (PRRSV) is equipped with 3C-like serine protease (3CLSP) activity, influencing crucial aspects such as virus replication, host IFN-<i>β</i> suppression, host cell apoptosis induction, and PRRSV detection facilitation. In response to wild or attenuated PRRSV strains, antibodies against non-structural proteins are generated, while inactivated vaccines fail to elicit such responses. Employing the Enzyme-Linked Immunosorbent Assay (ELISA) method targeting non-structural proteins helps discern the immune effects of inactivated versus wild or attenuated vaccine strains. The study focused on the NSP4 protein from the PRRSV XH-GD strain (GenBank No. EU624117.1), which was cloned, expressed, and leveraged as a coating protein for establishing an indirect enzyme-linked immunosorbent assay (ELISA) detection method. This method showcased outstanding specificity, repeatability, and sensitivity, exhibiting a notable agreement rate of 91.74% with the PRRSV IDEXX ELISA kit. The successful development of the NSP4 indirect ELISA not only supports the detection of PRRSV antibodies but also provides a robust platform for ongoing antibody monitoring in pig farming. Utilizing PRRSV NSP4 for ELISA antibody detection offers a more sustainable approach for continuous surveillance. The high agreement between this method and commercial kits lays a solid groundwork for effectively differentiating between inactivated and attenuated vaccines, enhancing the management and monitoring of PRRSV in pig populations.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"16 ","pages":"1549008"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876416/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2025.1549008","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The non-structural protein 4 (NSP4) of porcine reproductive and respiratory syndrome virus (PRRSV) is equipped with 3C-like serine protease (3CLSP) activity, influencing crucial aspects such as virus replication, host IFN-β suppression, host cell apoptosis induction, and PRRSV detection facilitation. In response to wild or attenuated PRRSV strains, antibodies against non-structural proteins are generated, while inactivated vaccines fail to elicit such responses. Employing the Enzyme-Linked Immunosorbent Assay (ELISA) method targeting non-structural proteins helps discern the immune effects of inactivated versus wild or attenuated vaccine strains. The study focused on the NSP4 protein from the PRRSV XH-GD strain (GenBank No. EU624117.1), which was cloned, expressed, and leveraged as a coating protein for establishing an indirect enzyme-linked immunosorbent assay (ELISA) detection method. This method showcased outstanding specificity, repeatability, and sensitivity, exhibiting a notable agreement rate of 91.74% with the PRRSV IDEXX ELISA kit. The successful development of the NSP4 indirect ELISA not only supports the detection of PRRSV antibodies but also provides a robust platform for ongoing antibody monitoring in pig farming. Utilizing PRRSV NSP4 for ELISA antibody detection offers a more sustainable approach for continuous surveillance. The high agreement between this method and commercial kits lays a solid groundwork for effectively differentiating between inactivated and attenuated vaccines, enhancing the management and monitoring of PRRSV in pig populations.
期刊介绍:
Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.