Yao Wang, Jiangli Wang, Yingjie Li, Yongchao Jin, Xiyin Wang
{"title":"Divergent evolutionary paces among eudicot plants revealed by simultaneously duplicated genes produced billions of years ago.","authors":"Yao Wang, Jiangli Wang, Yingjie Li, Yongchao Jin, Xiyin Wang","doi":"10.3389/fpls.2025.1518981","DOIUrl":null,"url":null,"abstract":"<p><p>Polyploidization often occurs more than once along an evolutionary lineage to form extant plants. Major core eudicot plants share a whole-genome triplication (ceWGT), through which thousands of simultaneously duplicated genes are retained in extant genomes, providing a valuable starting line to check the difference in their evolutionary paces. Here, by characterizing the synonymous nucleotide substitutions (Ks) between these duplicates from 28 representative plants from 21 families, we checked the various evolutionary rates among plants among plants subjected to different rounds of extra polyploidization events. We found up to 68.04% difference in evolutionary rates among the selected plants. A statistical correlation analysis (correlation coefficient =0.57, at significant level = 0.01) indicated that plants affected by extra polyploidies have evolved faster than plants without such extra polyploidies showing that (additional) polyploidization has resulted in elevated genetic diversity. Comparing the plants affected by additional polyploidization and plants without it, the duplicated genes produced by the ceWGT and retained in extant genomes have gathered 4.75% more nucleotide substitutions in the former plants. By identifying the fast- and slowly evolving genes, we showed that genes evolving at divergent rates were often related to different evolutionary paths. By performing correction to evolutionary rates using a genome-scale approach, we revised the estimated timing of key evolutionary events. The present effort exploited the simultaneously duplicated genes produced by the shared polyploidization and help deepen the understanding of the role of polyploidization, especially its long-term effect in plant evolution and biological innovation.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":"16 ","pages":"1518981"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876125/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2025.1518981","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Polyploidization often occurs more than once along an evolutionary lineage to form extant plants. Major core eudicot plants share a whole-genome triplication (ceWGT), through which thousands of simultaneously duplicated genes are retained in extant genomes, providing a valuable starting line to check the difference in their evolutionary paces. Here, by characterizing the synonymous nucleotide substitutions (Ks) between these duplicates from 28 representative plants from 21 families, we checked the various evolutionary rates among plants among plants subjected to different rounds of extra polyploidization events. We found up to 68.04% difference in evolutionary rates among the selected plants. A statistical correlation analysis (correlation coefficient =0.57, at significant level = 0.01) indicated that plants affected by extra polyploidies have evolved faster than plants without such extra polyploidies showing that (additional) polyploidization has resulted in elevated genetic diversity. Comparing the plants affected by additional polyploidization and plants without it, the duplicated genes produced by the ceWGT and retained in extant genomes have gathered 4.75% more nucleotide substitutions in the former plants. By identifying the fast- and slowly evolving genes, we showed that genes evolving at divergent rates were often related to different evolutionary paths. By performing correction to evolutionary rates using a genome-scale approach, we revised the estimated timing of key evolutionary events. The present effort exploited the simultaneously duplicated genes produced by the shared polyploidization and help deepen the understanding of the role of polyploidization, especially its long-term effect in plant evolution and biological innovation.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.