A novel recurrent ARL3 variant c.209G > A p.(Gly70Glu) causes variable non-syndromic dominant retinal dystrophy with defective lipidated protein transport in human retinal stem cell models.

IF 3.1 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Human molecular genetics Pub Date : 2025-03-03 DOI:10.1093/hmg/ddaf029
Julio C Corral-Serrano, Veronika Vaclavik, Stijn Van de Sompele, Karolina Kaminska, Katarina Jovanovic, Pascal Escher, Filip Van den Broeck, Francesca Cancellieri, Vasileios Toulis, Bart P Leroy, Julie de Zaeytijd, Zhixuan You, Daniele Ottaviani, Mathieu Quinodoz, Gabriela Bordeanu, Alison J Hardcastle, Frauke Coppieters, Viet H Tran, Michael E Cheetham, Carlo Rivolta, Elfride De Baere
{"title":"A novel recurrent ARL3 variant c.209G > A p.(Gly70Glu) causes variable non-syndromic dominant retinal dystrophy with defective lipidated protein transport in human retinal stem cell models.","authors":"Julio C Corral-Serrano, Veronika Vaclavik, Stijn Van de Sompele, Karolina Kaminska, Katarina Jovanovic, Pascal Escher, Filip Van den Broeck, Francesca Cancellieri, Vasileios Toulis, Bart P Leroy, Julie de Zaeytijd, Zhixuan You, Daniele Ottaviani, Mathieu Quinodoz, Gabriela Bordeanu, Alison J Hardcastle, Frauke Coppieters, Viet H Tran, Michael E Cheetham, Carlo Rivolta, Elfride De Baere","doi":"10.1093/hmg/ddaf029","DOIUrl":null,"url":null,"abstract":"<p><p>Inherited retinal dystrophies (IRDs) are characterized by their high clinical and genetic heterogeneity. Despite significant advances in the identification of genes associated with IRDs, many individuals and families still have not received a definite molecular diagnosis. Here, we performed clinical examinations and conducted genetic testing in five families with IRD. Whole exome sequencing in the five index cases revealed a heterozygous missense variant, c.209G > A, p.(Gly70Glu) in the ARL3 gene (NM_004311.4). A de novo occurrence was demonstrated in one affected individual and autosomal dominant inheritance in nine affected individuals from four families. Their phenotypes displayed variable expressivity, and ranged from rod-cone to cone-rod dystrophy with photophobia. Human induced pluripotent stem cells (hiPSCs) were generated from dermal fibroblasts from the individual with the de novo ARL3 variant and were differentiated to retinal pigment epithelium cells (RPE) and retinal organoids. Immunofluorescence analyses in these models showed decreased INPP5E localization within the cilia of RPE and connecting cilia of retinal organoids, as well as reduced PDE6⍺ in the organoid outer segments, suggesting that the p.(Gly70Glu) variant causes IRD by defective lipidated protein transport in photoreceptors and/or RPE. This is the first study of ARL3 dysfunction in human retinal cells, highlighting its importance for retinal homeostasis, as well as a variability in the clinical presentation of ARL3-associated IRD.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf029","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inherited retinal dystrophies (IRDs) are characterized by their high clinical and genetic heterogeneity. Despite significant advances in the identification of genes associated with IRDs, many individuals and families still have not received a definite molecular diagnosis. Here, we performed clinical examinations and conducted genetic testing in five families with IRD. Whole exome sequencing in the five index cases revealed a heterozygous missense variant, c.209G > A, p.(Gly70Glu) in the ARL3 gene (NM_004311.4). A de novo occurrence was demonstrated in one affected individual and autosomal dominant inheritance in nine affected individuals from four families. Their phenotypes displayed variable expressivity, and ranged from rod-cone to cone-rod dystrophy with photophobia. Human induced pluripotent stem cells (hiPSCs) were generated from dermal fibroblasts from the individual with the de novo ARL3 variant and were differentiated to retinal pigment epithelium cells (RPE) and retinal organoids. Immunofluorescence analyses in these models showed decreased INPP5E localization within the cilia of RPE and connecting cilia of retinal organoids, as well as reduced PDE6⍺ in the organoid outer segments, suggesting that the p.(Gly70Glu) variant causes IRD by defective lipidated protein transport in photoreceptors and/or RPE. This is the first study of ARL3 dysfunction in human retinal cells, highlighting its importance for retinal homeostasis, as well as a variability in the clinical presentation of ARL3-associated IRD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Human molecular genetics
Human molecular genetics 生物-生化与分子生物学
CiteScore
6.90
自引率
2.90%
发文量
294
审稿时长
2-4 weeks
期刊介绍: Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics cancer genetics neurogenetics chromosome and genome structure and function therapy of genetic disease stem cells in human genetic disease and therapy, including the application of iPS cells genome-wide association studies mouse and other models of human diseases functional genomics computational genomics In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.
期刊最新文献
Mate-pair sequencing assisted prenatal counseling for a rare complex chromosomal rearrangement carrier. Nucleoredoxin regulates WNT signaling during pituitary stem cell differentiation. A novel recurrent ARL3 variant c.209G > A p.(Gly70Glu) causes variable non-syndromic dominant retinal dystrophy with defective lipidated protein transport in human retinal stem cell models. Correction to: Expression variation of long noncoding RNAs in dopaminergic cells-derived from stem cells and their MPP+ induced PD models. New selective androgen receptor modulator TEI-SARM2 improves muscle function in a Duchenne muscular dystrophy rat model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1