Xiyang Peng, Yuting Zhao, Ziheng Li, Xulong Wang, Fengtao Nan, Zhong Zhao, Yun Yang, Po Yang
{"title":"Multi-Scale and Multi-Level Feature Assessment Framework for Classification of Parkinson's Disease State From Short-Term Motor Tasks.","authors":"Xiyang Peng, Yuting Zhao, Ziheng Li, Xulong Wang, Fengtao Nan, Zhong Zhao, Yun Yang, Po Yang","doi":"10.1109/TBME.2024.3418688","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Recent quantification research on Parkinson's disease (PD) integrates wearable technology with machine learning methods, indicating a strong potential for practical applications. However, the effectiveness of these techniques is influenced by environmental settings and is hardly applied in real-world situations. This paper aims to propose an effective feature assessment framework to automatically rate the severity of PD motor symptoms from short-term motor tasks, and then classify different PD severity levels in the real world.</p><p><strong>Methods: </strong>This paper identified specific PD motor symptoms using a novel feature-assessment framework at both segment-level and sample-level. Features were selected after calculating SHapley Additive exPlanation(SHAP) value, and verified by different machine learning methods with appropriate parameters. This framework has been verified on real-world data from 100 PD patients performing Unified Parkinson's Disease Rating Scale(UPDRS)-recommended short motor tasks, each task lasting 20-50 seconds.</p><p><strong>Results: </strong>The sensitivity for recognizing motor fluctuations reached 88% in tremor recognition. Additionally, LightGBM achieved the highest accuracy for early detection(92.59%) and achieved 71.58% in fine-grained severity classification using 31 selected features.</p><p><strong>Conclusion: </strong>This paper reports the first effort to assess multi-level and multi-scale features for automatic quantification of motor symptoms and PD severity levels. The proposed framework has been proven effective in assessing key PD information for recognition during short-term tasks.</p><p><strong>Significance: </strong>The explanatory analysis of digital features in this study provides more prior knowledge for PD self-assessment in a free-living environment.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":"1211-1224"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2024.3418688","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Recent quantification research on Parkinson's disease (PD) integrates wearable technology with machine learning methods, indicating a strong potential for practical applications. However, the effectiveness of these techniques is influenced by environmental settings and is hardly applied in real-world situations. This paper aims to propose an effective feature assessment framework to automatically rate the severity of PD motor symptoms from short-term motor tasks, and then classify different PD severity levels in the real world.
Methods: This paper identified specific PD motor symptoms using a novel feature-assessment framework at both segment-level and sample-level. Features were selected after calculating SHapley Additive exPlanation(SHAP) value, and verified by different machine learning methods with appropriate parameters. This framework has been verified on real-world data from 100 PD patients performing Unified Parkinson's Disease Rating Scale(UPDRS)-recommended short motor tasks, each task lasting 20-50 seconds.
Results: The sensitivity for recognizing motor fluctuations reached 88% in tremor recognition. Additionally, LightGBM achieved the highest accuracy for early detection(92.59%) and achieved 71.58% in fine-grained severity classification using 31 selected features.
Conclusion: This paper reports the first effort to assess multi-level and multi-scale features for automatic quantification of motor symptoms and PD severity levels. The proposed framework has been proven effective in assessing key PD information for recognition during short-term tasks.
Significance: The explanatory analysis of digital features in this study provides more prior knowledge for PD self-assessment in a free-living environment.
期刊介绍:
IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.