Structural variants linked to Alzheimer's disease and other common age-related clinical and neuropathologic traits.

IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY Genome Medicine Pub Date : 2025-03-04 DOI:10.1186/s13073-025-01444-6
Ricardo A Vialle, Katia de Paiva Lopes, Yan Li, Bernard Ng, Julie A Schneider, Aron S Buchman, Yanling Wang, Jose M Farfel, Lisa L Barnes, Aliza P Wingo, Thomas S Wingo, Nicholas T Seyfried, Philip L De Jager, Chris Gaiteri, Shinya Tasaki, David A Bennett
{"title":"Structural variants linked to Alzheimer's disease and other common age-related clinical and neuropathologic traits.","authors":"Ricardo A Vialle, Katia de Paiva Lopes, Yan Li, Bernard Ng, Julie A Schneider, Aron S Buchman, Yanling Wang, Jose M Farfel, Lisa L Barnes, Aliza P Wingo, Thomas S Wingo, Nicholas T Seyfried, Philip L De Jager, Chris Gaiteri, Shinya Tasaki, David A Bennett","doi":"10.1186/s13073-025-01444-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Alzheimer's disease (AD) is a complex neurodegenerative disorder with substantial genetic influence. While genome-wide association studies (GWAS) have identified numerous risk loci for late-onset AD (LOAD), the functional mechanisms underlying most of these associations remain unresolved. Large genomic rearrangements, known as structural variants (SVs), represent a promising avenue for elucidating such mechanisms within some of these loci.</p><p><strong>Methods: </strong>By leveraging data from two ongoing cohort studies of aging and dementia, the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP), we performed genome-wide association analysis testing 20,205 common SVs from 1088 participants with whole genome sequencing (WGS) data. A range of Alzheimer's disease and other common age-related clinical and neuropathologic traits were examined.</p><p><strong>Results: </strong>First, we mapped SVs across 81 AD risk loci and discovered 22 SVs in linkage disequilibrium (LD) with GWAS lead variants and directly associated with the phenotypes tested. The strongest association was a deletion of an Alu element in the 3'UTR of the TMEM106B gene, in high LD with the respective AD GWAS locus and associated with multiple AD and AD-related disorders (ADRD) phenotypes, including tangles density, TDP-43, and cognitive resilience. The deletion of this element was also linked to lower TMEM106B protein abundance. We also found a 22-kb deletion associated with depression in ROS/MAP and bearing similar association patterns as GWAS SNPs at the IQCK locus. In addition, we leveraged our catalog of SV-GWAS to replicate and characterize independent findings in SV-based GWAS for AD and five other neurodegenerative diseases. Among these findings, we highlight the replication of genome-wide significant SVs for progressive supranuclear palsy (PSP), including markers for the 17q21.31 MAPT locus inversion and a 1483-bp deletion at the CYP2A13 locus, along with other suggestive associations, such as a 994-bp duplication in the LMNTD1 locus, suggestively linked to AD and a 3958-bp deletion at the DOCK5 locus linked to Lewy body disease (LBD) (P = 3.36 × 10<sup>-4</sup>).</p><p><strong>Conclusions: </strong>While still limited in sample size, this study highlights the utility of including analysis of SVs for elucidating mechanisms underlying GWAS loci and provides a valuable resource for the characterization of the effects of SVs in neurodegenerative disease pathogenesis.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"20"},"PeriodicalIF":10.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881306/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01444-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder with substantial genetic influence. While genome-wide association studies (GWAS) have identified numerous risk loci for late-onset AD (LOAD), the functional mechanisms underlying most of these associations remain unresolved. Large genomic rearrangements, known as structural variants (SVs), represent a promising avenue for elucidating such mechanisms within some of these loci.

Methods: By leveraging data from two ongoing cohort studies of aging and dementia, the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP), we performed genome-wide association analysis testing 20,205 common SVs from 1088 participants with whole genome sequencing (WGS) data. A range of Alzheimer's disease and other common age-related clinical and neuropathologic traits were examined.

Results: First, we mapped SVs across 81 AD risk loci and discovered 22 SVs in linkage disequilibrium (LD) with GWAS lead variants and directly associated with the phenotypes tested. The strongest association was a deletion of an Alu element in the 3'UTR of the TMEM106B gene, in high LD with the respective AD GWAS locus and associated with multiple AD and AD-related disorders (ADRD) phenotypes, including tangles density, TDP-43, and cognitive resilience. The deletion of this element was also linked to lower TMEM106B protein abundance. We also found a 22-kb deletion associated with depression in ROS/MAP and bearing similar association patterns as GWAS SNPs at the IQCK locus. In addition, we leveraged our catalog of SV-GWAS to replicate and characterize independent findings in SV-based GWAS for AD and five other neurodegenerative diseases. Among these findings, we highlight the replication of genome-wide significant SVs for progressive supranuclear palsy (PSP), including markers for the 17q21.31 MAPT locus inversion and a 1483-bp deletion at the CYP2A13 locus, along with other suggestive associations, such as a 994-bp duplication in the LMNTD1 locus, suggestively linked to AD and a 3958-bp deletion at the DOCK5 locus linked to Lewy body disease (LBD) (P = 3.36 × 10-4).

Conclusions: While still limited in sample size, this study highlights the utility of including analysis of SVs for elucidating mechanisms underlying GWAS loci and provides a valuable resource for the characterization of the effects of SVs in neurodegenerative disease pathogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
期刊最新文献
Genomic insights into the plasmidome of non-tuberculous mycobacteria. Structural variants linked to Alzheimer's disease and other common age-related clinical and neuropathologic traits. Non-coding cis-regulatory variants in HK1 cause congenital hyperinsulinism with variable disease severity. STModule: identifying tissue modules to uncover spatial components and characteristics of transcriptomic landscapes. LETSmix: a spatially informed and learning-based domain adaptation method for cell-type deconvolution in spatial transcriptomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1