Habiba Lawal, Shamsaldeen Ibrahim Saeed, Mohammed Sani Gaddafi, Nor Fadhilah Kamaruzzaman
{"title":"Green Nanotechnology: Naturally Sourced Nanoparticles as Antibiofilm and Antivirulence Agents Against Infectious Diseases.","authors":"Habiba Lawal, Shamsaldeen Ibrahim Saeed, Mohammed Sani Gaddafi, Nor Fadhilah Kamaruzzaman","doi":"10.1155/ijm/8746754","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating threat of infectious diseases, exacerbated by antimicrobial resistance (AMR) and biofilm formation, necessitates innovative therapeutic strategies. This review presents a comprehensive exploration of the potential of nanoparticles synthesized from natural sources, including plant extracts, microbial products, and marine compounds, as antimicrobial agents. These naturally derived nanoparticles demonstrated significant antibiofilm and antivirulence effects, with specific examples revealing their capacity to reduce biofilm mass by up to 78% and inhibit bacterial quorum sensing by 65%. The integration of bioactive compounds, such as polyphenols and chitosan, facilitates nanoparticle stability and enhances antimicrobial efficacy, while green synthesis protocols reduce environmental risks. Notably, the review identifies the potential of silver nanoparticles synthesized using green tea extracts, achieving 85% inhibition of polymicrobial growth in vitro. Despite these promising results, challenges such as standardization of synthesis protocols and scalability persist. This study underscores the transformative potential of leveraging naturally sourced nanoparticles as sustainable alternatives to conventional antimicrobials, offering quantitative insights for their future application in combating mono- and polymicrobial infections.</p>","PeriodicalId":14098,"journal":{"name":"International Journal of Microbiology","volume":"2025 ","pages":"8746754"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876540/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ijm/8746754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating threat of infectious diseases, exacerbated by antimicrobial resistance (AMR) and biofilm formation, necessitates innovative therapeutic strategies. This review presents a comprehensive exploration of the potential of nanoparticles synthesized from natural sources, including plant extracts, microbial products, and marine compounds, as antimicrobial agents. These naturally derived nanoparticles demonstrated significant antibiofilm and antivirulence effects, with specific examples revealing their capacity to reduce biofilm mass by up to 78% and inhibit bacterial quorum sensing by 65%. The integration of bioactive compounds, such as polyphenols and chitosan, facilitates nanoparticle stability and enhances antimicrobial efficacy, while green synthesis protocols reduce environmental risks. Notably, the review identifies the potential of silver nanoparticles synthesized using green tea extracts, achieving 85% inhibition of polymicrobial growth in vitro. Despite these promising results, challenges such as standardization of synthesis protocols and scalability persist. This study underscores the transformative potential of leveraging naturally sourced nanoparticles as sustainable alternatives to conventional antimicrobials, offering quantitative insights for their future application in combating mono- and polymicrobial infections.
期刊介绍:
International Journal of Microbiology is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies on microorganisms and their interaction with hosts and the environment. The journal covers all microbes, including bacteria, fungi, viruses, archaea, and protozoa. Basic science will be considered, as well as medical and applied research.