Disentangled Representation Learning for Capturing Individualized Brain Atrophy via Pseudo-Healthy Synthesis.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Journal of Biomedical and Health Informatics Pub Date : 2025-02-18 DOI:10.1109/JBHI.2025.3543218
Zhuangzhuang Li, Kun Zhao, Pindong Chen, Dawei Wang, Hongxiang Yao, Bo Zhou, Jie Lu, Pan Wang, Xi Zhang, Ying Han, Yong Liu
{"title":"Disentangled Representation Learning for Capturing Individualized Brain Atrophy via Pseudo-Healthy Synthesis.","authors":"Zhuangzhuang Li, Kun Zhao, Pindong Chen, Dawei Wang, Hongxiang Yao, Bo Zhou, Jie Lu, Pan Wang, Xi Zhang, Ying Han, Yong Liu","doi":"10.1109/JBHI.2025.3543218","DOIUrl":null,"url":null,"abstract":"<p><p>Brain atrophy emerges as a distinctive hallmark in various neurodegenerative diseases, demonstrating a progressive trajectory across diverse disease stages and concurrently manifesting in tandem with a discernible decline in cognitive abilities. Understanding the individualized patterns of brain atrophy is critical for precision medicine and the prognosis of neurodegenerative diseases. However, it is difficult to obtain longitudinal data to compare changes before and after the onset of diseases. In this study, we present a deep disentangled generative model (DDGM) for capturing individualized atrophy patterns via disentangling patient images into \"realistic\" healthy counterfactual images and abnormal residual maps. The proposed DDGM consists of four modules: normal MRI synthesis, residual map synthesis, input reconstruction module, and mutual information neural estimator (MINE). The MINE and adversarial learning strategy together ensure independence between disease-related features and features shared by both disease and healthy controls. In addition, we proposed a comprehensive evaluation of the effectiveness of synthetic pseudo-healthy images, focusing on both their healthiness and subject identity. The results indicated that the proposed DDGM effectively preserves these characteristics in the synthesized pseudo-healthy images, outperforming existing methods. The proposed method demonstrates robust generalization capabilities across two independent datasets from different races and sites. Analysis of the disease residual/saliency maps revealed specific atrophy patterns associated with Alzheimer's disease (AD), particularly in the hippocampus and amygdala regions. These accurate individualized atrophy patterns enhance the performance of AD classification tasks, resulting in an improvement in classification accuracy to 92.50 2.70%.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3543218","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Brain atrophy emerges as a distinctive hallmark in various neurodegenerative diseases, demonstrating a progressive trajectory across diverse disease stages and concurrently manifesting in tandem with a discernible decline in cognitive abilities. Understanding the individualized patterns of brain atrophy is critical for precision medicine and the prognosis of neurodegenerative diseases. However, it is difficult to obtain longitudinal data to compare changes before and after the onset of diseases. In this study, we present a deep disentangled generative model (DDGM) for capturing individualized atrophy patterns via disentangling patient images into "realistic" healthy counterfactual images and abnormal residual maps. The proposed DDGM consists of four modules: normal MRI synthesis, residual map synthesis, input reconstruction module, and mutual information neural estimator (MINE). The MINE and adversarial learning strategy together ensure independence between disease-related features and features shared by both disease and healthy controls. In addition, we proposed a comprehensive evaluation of the effectiveness of synthetic pseudo-healthy images, focusing on both their healthiness and subject identity. The results indicated that the proposed DDGM effectively preserves these characteristics in the synthesized pseudo-healthy images, outperforming existing methods. The proposed method demonstrates robust generalization capabilities across two independent datasets from different races and sites. Analysis of the disease residual/saliency maps revealed specific atrophy patterns associated with Alzheimer's disease (AD), particularly in the hippocampus and amygdala regions. These accurate individualized atrophy patterns enhance the performance of AD classification tasks, resulting in an improvement in classification accuracy to 92.50 2.70%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
期刊最新文献
Design, Performance Evaluation and Optimization for Intensive Care Networks Based on Non-Hierarchical Overflow Loss Systems. Detection of Early Parkinson's Disease by Leveraging Speech Foundation Models. MMFmiRLocEL: A multi-model fusion and ensemble learning approach for identifying miRNA subcellular localization using RNA structure language model. Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1