Efficient Breast Lesion Segmentation from Ultrasound Videos Across Multiple Source-limited Platforms.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Journal of Biomedical and Health Informatics Pub Date : 2025-02-19 DOI:10.1109/JBHI.2025.3543435
Yan Pang, Yunhao Li, Teng Huang, Jiaming Liang, Ziyu Ding, Hao Chen, Baoliang Zhao, Ying Hu, Zheng Zhang, Qiong Wang
{"title":"Efficient Breast Lesion Segmentation from Ultrasound Videos Across Multiple Source-limited Platforms.","authors":"Yan Pang, Yunhao Li, Teng Huang, Jiaming Liang, Ziyu Ding, Hao Chen, Baoliang Zhao, Ying Hu, Zheng Zhang, Qiong Wang","doi":"10.1109/JBHI.2025.3543435","DOIUrl":null,"url":null,"abstract":"<p><p>Medical video segmentation is fundamentally important in clinical diagnosis and treatment procedures, offering dynamic tracking of breast lesions across frames in ultrasound videos for improved segmentation performance. However, existing approaches face challenges in striking a balance between segmentation performance and inference speed, hindering real-time application in resource-constrained medical environments. In order to address these limitations, we present BaS, a blazing-fast on-device breast lesion segmentation model. BaS integrates the Stem module and BaSBlock to refine representations through inter- and intra-frame analysis on ultrasound videos. In addition, we release two versions of BaS: the BaS-S for superior segmentation performance and the BaS-L for accelerated inference times. Experimental Results indicate that BaS surpasses the top-performing models in terms of segmenting efficiency and accuracy of predictions on devices with limited resources. This work advances the development of efficient medical video segmentation frameworks applicable to multiple medical platforms. Code: https://github.com/aigzhusmart/BaS.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3543435","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Medical video segmentation is fundamentally important in clinical diagnosis and treatment procedures, offering dynamic tracking of breast lesions across frames in ultrasound videos for improved segmentation performance. However, existing approaches face challenges in striking a balance between segmentation performance and inference speed, hindering real-time application in resource-constrained medical environments. In order to address these limitations, we present BaS, a blazing-fast on-device breast lesion segmentation model. BaS integrates the Stem module and BaSBlock to refine representations through inter- and intra-frame analysis on ultrasound videos. In addition, we release two versions of BaS: the BaS-S for superior segmentation performance and the BaS-L for accelerated inference times. Experimental Results indicate that BaS surpasses the top-performing models in terms of segmenting efficiency and accuracy of predictions on devices with limited resources. This work advances the development of efficient medical video segmentation frameworks applicable to multiple medical platforms. Code: https://github.com/aigzhusmart/BaS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
期刊最新文献
Table of Contents Front Cover IEEE Journal of Biomedical and Health Informatics Information for Authors IEEE Journal of Biomedical and Health Informatics Publication Information Guest Editorial:Application of Computational Techniques in Drug Discovery and Disease Treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1