Alejandro Golfe, Adrian Colomer, Jose Padres, Valery Naranjo
{"title":"Enhancing Image Retrieval Performance With Generative Models in Siamese Networks.","authors":"Alejandro Golfe, Adrian Colomer, Jose Padres, Valery Naranjo","doi":"10.1109/JBHI.2025.3543907","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer is a critical healthcare challenge globally and is one of the most prevalent types of cancer in men. Early and accurate diagnosis is essential for effective treatment and improved patient outcomes. In the existing literature, computer-aided diagnosis (CAD) solutions have been developed to assist pathologists in various tasks, including classification, diagnosis, and prostate cancer grading. Content-based image retrieval (CBIR) techniques provide valuable approaches to enhance these computer-aided solutions. This study evaluates how generative deep learning models can improve the quality of retrievals within a CBIR system. Specifically, we propose applying a Siamese Network approach, which enables us to learn how to encode image patches into latent representations for retrieval purposes. We used the ProGleason-GAN framework trained on the SiCAPv2 dataset to create similar pairs of input patches. Our observations indicate that introducing synthetic patches leads to notable improvements in the evaluated metrics, underscoring the utility of generative models within CBIR tasks. Furthermore, this work is the first in the literature where latent representations optimized for CBIR are used to train an attention mechanism for performing Gleason Scoring of a WSI.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3543907","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Prostate cancer is a critical healthcare challenge globally and is one of the most prevalent types of cancer in men. Early and accurate diagnosis is essential for effective treatment and improved patient outcomes. In the existing literature, computer-aided diagnosis (CAD) solutions have been developed to assist pathologists in various tasks, including classification, diagnosis, and prostate cancer grading. Content-based image retrieval (CBIR) techniques provide valuable approaches to enhance these computer-aided solutions. This study evaluates how generative deep learning models can improve the quality of retrievals within a CBIR system. Specifically, we propose applying a Siamese Network approach, which enables us to learn how to encode image patches into latent representations for retrieval purposes. We used the ProGleason-GAN framework trained on the SiCAPv2 dataset to create similar pairs of input patches. Our observations indicate that introducing synthetic patches leads to notable improvements in the evaluated metrics, underscoring the utility of generative models within CBIR tasks. Furthermore, this work is the first in the literature where latent representations optimized for CBIR are used to train an attention mechanism for performing Gleason Scoring of a WSI.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.