Towards Clinical Application of Enhanced Timed Up and Go with Markerless Motion Capture and Machine Learning for Balance and Gait Assessment.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Journal of Biomedical and Health Informatics Pub Date : 2025-02-18 DOI:10.1109/JBHI.2025.3543095
Longbin Zhang, Ananda Sidarta, Tsung-Lin Wu, Prayook Jatesiktat, Hao Wang, Lei Li, Patrick Wai-Hang Kwong, Aoyang Long, Xiangyu Long, Wei Tech Ang
{"title":"Towards Clinical Application of Enhanced Timed Up and Go with Markerless Motion Capture and Machine Learning for Balance and Gait Assessment.","authors":"Longbin Zhang, Ananda Sidarta, Tsung-Lin Wu, Prayook Jatesiktat, Hao Wang, Lei Li, Patrick Wai-Hang Kwong, Aoyang Long, Xiangyu Long, Wei Tech Ang","doi":"10.1109/JBHI.2025.3543095","DOIUrl":null,"url":null,"abstract":"<p><p>Balance and gait impairments play a key role in falls among the elderly. Traditional clinical scales such as the Berg Balance Scale (BBS) to assess fall risk are often subjective, time consuming, and does not assess gait performance. Shorter assessments such as Timed Up and Go (TUG) are available, but most clinicians only look into the completion time. This study aimed to develop a fast, low-cost, and automated framework for balance function assessment and comprehensive gait analysis by enhancing the traditional TUG test with a markerless motion capture (MoCap) system and machine learning models. In total, we included TUG datasets of 70 participants with varying degrees of fall risk based on the BBS scores. We segmented TUG trials into five phases automatically using data from the MoCap system and extracted features from the phases. These features were then analyzed to identify those that significantly discriminate between high and low fall risk groups. Using the identified features, various machine learning models were tested to estimate the BBS scores. The markers obtained from the markerless MoCap system were used for detailed gait analysis, and lower limb kinematics were compared between the markerless and marker-based methods. Our findings indicate that individuals at high risk of falling had longer completion times, lower performance velocities, and smaller ranges of motion in lower-limb joints. Among the tested machine learning models, random forest demonstrated the best performance in predicting BBS scores (RMSE: 0.98, : 0.94). Additionally, our markerless MoCap system showed comparable accuracy to state-of-the-art systems, eliminating the need to attach markers or sensors. The findings could help develop a quick and objective tool for balance and gait assessment in older adults, providing quantitative data to improve screening and intervention planning.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3543095","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Balance and gait impairments play a key role in falls among the elderly. Traditional clinical scales such as the Berg Balance Scale (BBS) to assess fall risk are often subjective, time consuming, and does not assess gait performance. Shorter assessments such as Timed Up and Go (TUG) are available, but most clinicians only look into the completion time. This study aimed to develop a fast, low-cost, and automated framework for balance function assessment and comprehensive gait analysis by enhancing the traditional TUG test with a markerless motion capture (MoCap) system and machine learning models. In total, we included TUG datasets of 70 participants with varying degrees of fall risk based on the BBS scores. We segmented TUG trials into five phases automatically using data from the MoCap system and extracted features from the phases. These features were then analyzed to identify those that significantly discriminate between high and low fall risk groups. Using the identified features, various machine learning models were tested to estimate the BBS scores. The markers obtained from the markerless MoCap system were used for detailed gait analysis, and lower limb kinematics were compared between the markerless and marker-based methods. Our findings indicate that individuals at high risk of falling had longer completion times, lower performance velocities, and smaller ranges of motion in lower-limb joints. Among the tested machine learning models, random forest demonstrated the best performance in predicting BBS scores (RMSE: 0.98, : 0.94). Additionally, our markerless MoCap system showed comparable accuracy to state-of-the-art systems, eliminating the need to attach markers or sensors. The findings could help develop a quick and objective tool for balance and gait assessment in older adults, providing quantitative data to improve screening and intervention planning.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
期刊最新文献
Design, Performance Evaluation and Optimization for Intensive Care Networks Based on Non-Hierarchical Overflow Loss Systems. Detection of Early Parkinson's Disease by Leveraging Speech Foundation Models. MMFmiRLocEL: A multi-model fusion and ensemble learning approach for identifying miRNA subcellular localization using RNA structure language model. Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1