Effects of different mechanisms on antimicrobial resistance in Pseudomonas aeruginosa: a strategic system for evaluating antibiotics against gram-negative bacteria.

IF 3.7 2区 生物学 Q2 MICROBIOLOGY Microbiology spectrum Pub Date : 2025-03-05 DOI:10.1128/spectrum.02418-24
Yu-Kuo Tsai, Jen-Chang Chang, Jia-Je Li, Esther Yip-Mei Liu, Chang-Phone Fung, Ching-Hsun Wang, Feng-Yee Chang, Jung-Chung Lin, L Kristopher Siu
{"title":"Effects of different mechanisms on antimicrobial resistance in <i>Pseudomonas aeruginosa</i>: a strategic system for evaluating antibiotics against gram-negative bacteria.","authors":"Yu-Kuo Tsai, Jen-Chang Chang, Jia-Je Li, Esther Yip-Mei Liu, Chang-Phone Fung, Ching-Hsun Wang, Feng-Yee Chang, Jung-Chung Lin, L Kristopher Siu","doi":"10.1128/spectrum.02418-24","DOIUrl":null,"url":null,"abstract":"<p><p>Our previous studies constructed a strategic system for testing antibiotics against specific resistance mechanisms using <i>Klebsiella pneumoniae</i> and <i>Acinetobacter baumannii</i>. However, it lacked resistance mechanisms specifically expressed only in <i>Pseudomonas</i> species. In this study, we constructed this system using <i>Pseudomonas aeruginosa</i>. In-frame deletion, site-directed mutagenesis, and plasmid transformation were used to generate genetically engineered strains with various resistance mechanisms from two fully susceptible <i>P. aeruginosa</i> strains. Antimicrobial susceptibility testing was used to test the efficacy of antibiotics against these strains in vitro. A total of 31 engineered strains with various antimicrobial resistance mechanisms from <i>P. aeruginosa</i> KPA888 and ATCC 27853 were constructed, and the same antibiotic resistance mechanism showed a similar effect on the MICs of the two strains. Compared to the parental strains, the engineered strains lacking porin OprD or lacking the regulator genes of efflux pumps all showed a ≥4-fold increase on the MICs of some of the 19 antibiotics tested. Mechanisms due to GyrA/ParC mutations and β-lactamases also contributed to their corresponding resistance as previously published. The strains constructed in this study possess well-defined resistance mechanisms and can be used to screen and evaluate the effectiveness of antibiotics against specific resistance mechanisms in <i>P. aeruginosa</i>. Building upon our previous studies on <i>K. pneumoniae</i> and <i>A. baumannii</i>, this strategic system, including a <i>P. aeruginosa</i> panel, has been expanded to cover almost all the important antibiotic resistance mechanisms of gram-negative bacteria that are in urgent need of new antibiotics.IMPORTANCEIn this study, an antibiotic assessment system for <i>P. aeruginosa</i> was developed, and the system can be expanded to include other key pathogens and resistance mechanisms. This system offers several benefits: (i) compound design: aid in the development of compounds that can bypass or counteract resistance mechanisms, leading to more effective treatments against specific resistant strains; (ii) combination therapies: facilitate the exploration of combination therapies, where multiple antibiotics may work synergistically to overcome resistance and enhance treatment efficacy; and (iii) targeted treatments: enable healthcare providers to prescribe more targeted treatments, reducing unnecessary antibiotic use and helping to slow the spread of antibiotic resistance. In summary, this system could streamline the development process, reduce costs, increase the success rate of new antibiotics, and help prevent and control antimicrobial resistance.</p>","PeriodicalId":18670,"journal":{"name":"Microbiology spectrum","volume":" ","pages":"e0241824"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology spectrum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/spectrum.02418-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Our previous studies constructed a strategic system for testing antibiotics against specific resistance mechanisms using Klebsiella pneumoniae and Acinetobacter baumannii. However, it lacked resistance mechanisms specifically expressed only in Pseudomonas species. In this study, we constructed this system using Pseudomonas aeruginosa. In-frame deletion, site-directed mutagenesis, and plasmid transformation were used to generate genetically engineered strains with various resistance mechanisms from two fully susceptible P. aeruginosa strains. Antimicrobial susceptibility testing was used to test the efficacy of antibiotics against these strains in vitro. A total of 31 engineered strains with various antimicrobial resistance mechanisms from P. aeruginosa KPA888 and ATCC 27853 were constructed, and the same antibiotic resistance mechanism showed a similar effect on the MICs of the two strains. Compared to the parental strains, the engineered strains lacking porin OprD or lacking the regulator genes of efflux pumps all showed a ≥4-fold increase on the MICs of some of the 19 antibiotics tested. Mechanisms due to GyrA/ParC mutations and β-lactamases also contributed to their corresponding resistance as previously published. The strains constructed in this study possess well-defined resistance mechanisms and can be used to screen and evaluate the effectiveness of antibiotics against specific resistance mechanisms in P. aeruginosa. Building upon our previous studies on K. pneumoniae and A. baumannii, this strategic system, including a P. aeruginosa panel, has been expanded to cover almost all the important antibiotic resistance mechanisms of gram-negative bacteria that are in urgent need of new antibiotics.IMPORTANCEIn this study, an antibiotic assessment system for P. aeruginosa was developed, and the system can be expanded to include other key pathogens and resistance mechanisms. This system offers several benefits: (i) compound design: aid in the development of compounds that can bypass or counteract resistance mechanisms, leading to more effective treatments against specific resistant strains; (ii) combination therapies: facilitate the exploration of combination therapies, where multiple antibiotics may work synergistically to overcome resistance and enhance treatment efficacy; and (iii) targeted treatments: enable healthcare providers to prescribe more targeted treatments, reducing unnecessary antibiotic use and helping to slow the spread of antibiotic resistance. In summary, this system could streamline the development process, reduce costs, increase the success rate of new antibiotics, and help prevent and control antimicrobial resistance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbiology spectrum
Microbiology spectrum Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.20
自引率
5.40%
发文量
1800
期刊介绍: Microbiology Spectrum publishes commissioned review articles on topics in microbiology representing ten content areas: Archaea; Food Microbiology; Bacterial Genetics, Cell Biology, and Physiology; Clinical Microbiology; Environmental Microbiology and Ecology; Eukaryotic Microbes; Genomics, Computational, and Synthetic Microbiology; Immunology; Pathogenesis; and Virology. Reviews are interrelated, with each review linking to other related content. A large board of Microbiology Spectrum editors aids in the development of topics for potential reviews and in the identification of an editor, or editors, who shepherd each collection.
期刊最新文献
A nomogram prediction model for embryo implantation outcomes based on the cervical microbiota of the infertile patients during IVF-FET. Multi-omics analysis of the mechanism of alfalfa and wheat-induced rumen flatulence in Xizang sheep. Differential effects of pine wilt disease on root endosphere, rhizosphere, and soil microbiome of Korean white pine. Diversity in chemical subunits and linkages: a key molecular determinant of microbial richness, microbiota interactions, and substrate utilization. Rapid detection of β-lactamase activity using the rapid Amp NP test.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1