Magnus B Johansen, Hector H Corzo, Andreas E Hillers-Bendtsen, Kurt V Mikkelsen, Dmytro Bykov
{"title":"Benchmarking third-order cluster perturbation theory for electronically excited states.","authors":"Magnus B Johansen, Hector H Corzo, Andreas E Hillers-Bendtsen, Kurt V Mikkelsen, Dmytro Bykov","doi":"10.1063/5.0253976","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we investigate the reliability of cluster perturbation (CP) theory applied to the calculation of electronically excited states through a comprehensive benchmark. In CP theory, perturbative corrections are added to the properties of a parent excitation space, which converge toward the properties of a target excitation space. For the CPS(D-n) model, perturbative corrections through order n are added to the coupled cluster singles (CCS) excitation energies to target the coupled cluster singles and doubles (CCSD) excitation energies. Through a comparative analysis of excitation energy calculations across a diverse set of molecules and wavefunction methods, we present a comprehensive evaluation of the accuracy of the third-order CPS(D) model, CPS(D-3), in calculating excitation energies. Our findings demonstrate that CPS(D-3) is a reliable alternative to established methods, particularly CCSD, while systematically overestimating the excitation energies compared to high-level coupled cluster methods such as CC3. These results highlight the strengths and limitations of CPS(D-3), as well as the promising directions for its future development.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0253976","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigate the reliability of cluster perturbation (CP) theory applied to the calculation of electronically excited states through a comprehensive benchmark. In CP theory, perturbative corrections are added to the properties of a parent excitation space, which converge toward the properties of a target excitation space. For the CPS(D-n) model, perturbative corrections through order n are added to the coupled cluster singles (CCS) excitation energies to target the coupled cluster singles and doubles (CCSD) excitation energies. Through a comparative analysis of excitation energy calculations across a diverse set of molecules and wavefunction methods, we present a comprehensive evaluation of the accuracy of the third-order CPS(D) model, CPS(D-3), in calculating excitation energies. Our findings demonstrate that CPS(D-3) is a reliable alternative to established methods, particularly CCSD, while systematically overestimating the excitation energies compared to high-level coupled cluster methods such as CC3. These results highlight the strengths and limitations of CPS(D-3), as well as the promising directions for its future development.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.