Unraveling cell-cell communication with NicheNet by inferring active ligands from transcriptomics data.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Protocols Pub Date : 2025-03-04 DOI:10.1038/s41596-024-01121-9
Chananchida Sang-Aram, Robin Browaeys, Ruth Seurinck, Yvan Saeys
{"title":"Unraveling cell-cell communication with NicheNet by inferring active ligands from transcriptomics data.","authors":"Chananchida Sang-Aram, Robin Browaeys, Ruth Seurinck, Yvan Saeys","doi":"10.1038/s41596-024-01121-9","DOIUrl":null,"url":null,"abstract":"<p><p>Ligand-receptor interactions constitute a fundamental mechanism of cell-cell communication and signaling. NicheNet is a well-established computational tool that infers ligand-receptor interactions that potentially regulate gene expression changes in receiver cell populations. Whereas the original publication delves into the algorithm and validation, this paper describes a best practices workflow cultivated over four years of experience and user feedback. Starting from the input single-cell expression matrix, we describe a 'sender-agnostic' approach that considers ligands from the entire microenvironment and a 'sender-focused' approach that considers ligands only from cell populations of interest. As output, users will obtain a list of prioritized ligands and their potential target genes, along with multiple visualizations. We include further developments made in NicheNet v2, in which we have updated the data sources and implemented a downstream procedure for prioritizing cell type-specific ligand-receptor pairs. Although a standard NicheNet analysis takes <10 min to run, users often invest additional time in making decisions about the approach and parameters that best suit their biological question. This paper serves to aid in this decision-making process by describing the most appropriate workflow for common experimental designs like case-control and cell-differentiation studies. Finally, in addition to the step-by-step description of the code, we also provide wrapper functions that enable the analysis to be run in one line of code, thus tailoring the workflow to users at all levels of computational proficiency.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01121-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Ligand-receptor interactions constitute a fundamental mechanism of cell-cell communication and signaling. NicheNet is a well-established computational tool that infers ligand-receptor interactions that potentially regulate gene expression changes in receiver cell populations. Whereas the original publication delves into the algorithm and validation, this paper describes a best practices workflow cultivated over four years of experience and user feedback. Starting from the input single-cell expression matrix, we describe a 'sender-agnostic' approach that considers ligands from the entire microenvironment and a 'sender-focused' approach that considers ligands only from cell populations of interest. As output, users will obtain a list of prioritized ligands and their potential target genes, along with multiple visualizations. We include further developments made in NicheNet v2, in which we have updated the data sources and implemented a downstream procedure for prioritizing cell type-specific ligand-receptor pairs. Although a standard NicheNet analysis takes <10 min to run, users often invest additional time in making decisions about the approach and parameters that best suit their biological question. This paper serves to aid in this decision-making process by describing the most appropriate workflow for common experimental designs like case-control and cell-differentiation studies. Finally, in addition to the step-by-step description of the code, we also provide wrapper functions that enable the analysis to be run in one line of code, thus tailoring the workflow to users at all levels of computational proficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
期刊最新文献
Construction of complex bacteriogenic protocells from living material assembly. Unraveling cell-cell communication with NicheNet by inferring active ligands from transcriptomics data. Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) in primary human immune cells and hematopoietic stem cells. A guide to reverse metabolomics-a framework for big data discovery strategy. 'Back-to-base' combined hypothermic and normothermic machine perfusion of human donor livers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1