{"title":"Understanding the impacts of temperature and precipitation on antimicrobial resistance in wastewater: theory, modeling, observation, and limitations.","authors":"Carly Ching, Indorica Sutradhar, Muhammad H Zaman","doi":"10.1128/msphere.00947-24","DOIUrl":null,"url":null,"abstract":"<p><p>Changing climate may contribute to increased antimicrobial resistance (AMR), particularly in wastewater which acts as a reservoir for resistant bacteria. Here, we determined how applying climate dependencies to our previously published model, rooted in theory, impacts computational simulations of AMR in wastewater. We found AMR levels were reduced at lower temperatures but increased with lower precipitation. The impact of precipitation on AMR was more pronounced at higher temperatures compared to lower temperatures. To validate our model, we investigated associations between total AMR gene abundance in wastewater from the Global Sewage Surveillance project and mean temperature and rainfall values extracted from European Centre for Medium-Range Weather Forcasts Reanalysis v5 (ERA5) reanalysis. We observed similar trends between the simulations and observations. Observations and simulations from our study can inform experiments to determine causal relationships as well as help identify other key drivers. We also discuss study challenges given the complex nature of AMR in the environment.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0094724"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00947-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Changing climate may contribute to increased antimicrobial resistance (AMR), particularly in wastewater which acts as a reservoir for resistant bacteria. Here, we determined how applying climate dependencies to our previously published model, rooted in theory, impacts computational simulations of AMR in wastewater. We found AMR levels were reduced at lower temperatures but increased with lower precipitation. The impact of precipitation on AMR was more pronounced at higher temperatures compared to lower temperatures. To validate our model, we investigated associations between total AMR gene abundance in wastewater from the Global Sewage Surveillance project and mean temperature and rainfall values extracted from European Centre for Medium-Range Weather Forcasts Reanalysis v5 (ERA5) reanalysis. We observed similar trends between the simulations and observations. Observations and simulations from our study can inform experiments to determine causal relationships as well as help identify other key drivers. We also discuss study challenges given the complex nature of AMR in the environment.
期刊介绍:
mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.