Maochou Liu, Wenxiang Wu, Ke Wang, Xinshuai Ren, Xueqin Zhang, Lei Wang, Jing Geng, Bo Yang
{"title":"Latitudinal patterns of tree β-diversity and relevant ecological processes vary across spatial extents in forests of southeastern China.","authors":"Maochou Liu, Wenxiang Wu, Ke Wang, Xinshuai Ren, Xueqin Zhang, Lei Wang, Jing Geng, Bo Yang","doi":"10.1016/j.pld.2024.11.003","DOIUrl":null,"url":null,"abstract":"<p><p>Latitudinal patterns of tree β-diversity reveal important insights into the biogeographical processes that influence forest ecosystems. Although previous studies have extensively documented β-diversity within relatively small spatial extents, the potential drivers of β-diversity along latitudinal gradients are still not well understood at larger spatial extents. In this study, we determined whether tree β-diversity is correlated with latitude in forests of southeastern China, and if so, what ecological processes contribute to these patterns of tree β-diversity. We specifically aimed to disentangle the relative contributions from interspecific aggregation and environmental filtering across various spatial extents. We delineated regional communities comprising multiple nearby national forest inventory (NFI) plots around random focal plots. The number of NFI plots in a regional community served as a surrogate for spatial extent. We also used a null model to simulate randomly assembled communities and quantify the deviation (β-deviation) between observed and expected β-diversity. We found that β-diversity decreased along a latitudinal gradient and that this pattern was clearer at larger spatial extents. In addition, latitudinal patterns of β-deviation were explained by the degree of species spatial aggregation. We also identified environmental factors that drive β-deviation in these forests, including precipitation, seasonality, and temperature variation. At larger spatial extents, these environmental variables explained up to 84% of the β-deviation. Our results reinforce that ecological processes are scale-dependent and collectively contribute to the β-gradient in subtropical forests. We recommend that conservation efforts maintain diverse forests and heterogeneous environments at multiple spatial extents to mitigate the adverse effects of climate change.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 1","pages":"89-97"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873649/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2024.11.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Latitudinal patterns of tree β-diversity reveal important insights into the biogeographical processes that influence forest ecosystems. Although previous studies have extensively documented β-diversity within relatively small spatial extents, the potential drivers of β-diversity along latitudinal gradients are still not well understood at larger spatial extents. In this study, we determined whether tree β-diversity is correlated with latitude in forests of southeastern China, and if so, what ecological processes contribute to these patterns of tree β-diversity. We specifically aimed to disentangle the relative contributions from interspecific aggregation and environmental filtering across various spatial extents. We delineated regional communities comprising multiple nearby national forest inventory (NFI) plots around random focal plots. The number of NFI plots in a regional community served as a surrogate for spatial extent. We also used a null model to simulate randomly assembled communities and quantify the deviation (β-deviation) between observed and expected β-diversity. We found that β-diversity decreased along a latitudinal gradient and that this pattern was clearer at larger spatial extents. In addition, latitudinal patterns of β-deviation were explained by the degree of species spatial aggregation. We also identified environmental factors that drive β-deviation in these forests, including precipitation, seasonality, and temperature variation. At larger spatial extents, these environmental variables explained up to 84% of the β-deviation. Our results reinforce that ecological processes are scale-dependent and collectively contribute to the β-gradient in subtropical forests. We recommend that conservation efforts maintain diverse forests and heterogeneous environments at multiple spatial extents to mitigate the adverse effects of climate change.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry