{"title":"EnSCAN: ENsemble Scoring for prioritizing CAusative variaNts across multiplatform GWASs for late-onset alzheimer's disease.","authors":"Onur Erdogan, Cem Iyigun, Yeşim Aydın Son","doi":"10.1186/s13040-025-00436-x","DOIUrl":null,"url":null,"abstract":"<p><p>Late-onset Alzheimer's disease (LOAD) is a progressive and complex neurodegenerative disorder of the aging population. LOAD is characterized by cognitive decline, such as deterioration of memory, loss of intellectual abilities, and other cognitive domains resulting from due to traumatic brain injuries. Alzheimer's Disease (AD) presents a complex genetic etiology that is still unclear, which limits its early or differential diagnosis. The Genome-Wide Association Studies (GWAS) enable the exploration of individual variants' statistical interactions at candidate loci, but univariate analysis overlooks interactions between variants. Machine learning (ML) algorithms can capture hidden, novel, and significant patterns while considering nonlinear interactions between variants to understand the genetic predisposition for complex genetic disorders. When working on different platforms, majority voting cannot be applied because the attributes differ. Hence, a new post-ML ensemble approach was developed to select significant SNVs via multiple genotyping platforms. We proposed the EnSCAN framework using a new algorithm to ensemble selected variants even from different platforms to prioritize candidate causative loci, which consequently helps improve ML results by combining the prior information captured from each dataset. The proposed ensemble algorithm utilizes the chromosomal locations of SNVs by mapping to cytogenetic bands, along with the proximities between pairs and multimodel Random Forest (RF) validations to prioritize SNVs and candidate causative genes for LOAD. The scoring method is scalable and can be applied to any multiplatform genotyping study. We present how the proposed EnSCAN scoring algorithm prioritizes candidate causative variants related to LOAD among three GWAS datasets.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"20"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881353/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00436-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Late-onset Alzheimer's disease (LOAD) is a progressive and complex neurodegenerative disorder of the aging population. LOAD is characterized by cognitive decline, such as deterioration of memory, loss of intellectual abilities, and other cognitive domains resulting from due to traumatic brain injuries. Alzheimer's Disease (AD) presents a complex genetic etiology that is still unclear, which limits its early or differential diagnosis. The Genome-Wide Association Studies (GWAS) enable the exploration of individual variants' statistical interactions at candidate loci, but univariate analysis overlooks interactions between variants. Machine learning (ML) algorithms can capture hidden, novel, and significant patterns while considering nonlinear interactions between variants to understand the genetic predisposition for complex genetic disorders. When working on different platforms, majority voting cannot be applied because the attributes differ. Hence, a new post-ML ensemble approach was developed to select significant SNVs via multiple genotyping platforms. We proposed the EnSCAN framework using a new algorithm to ensemble selected variants even from different platforms to prioritize candidate causative loci, which consequently helps improve ML results by combining the prior information captured from each dataset. The proposed ensemble algorithm utilizes the chromosomal locations of SNVs by mapping to cytogenetic bands, along with the proximities between pairs and multimodel Random Forest (RF) validations to prioritize SNVs and candidate causative genes for LOAD. The scoring method is scalable and can be applied to any multiplatform genotyping study. We present how the proposed EnSCAN scoring algorithm prioritizes candidate causative variants related to LOAD among three GWAS datasets.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.