EnSCAN: ENsemble Scoring for prioritizing CAusative variaNts across multiplatform GWASs for late-onset alzheimer's disease.

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biodata Mining Pub Date : 2025-03-04 DOI:10.1186/s13040-025-00436-x
Onur Erdogan, Cem Iyigun, Yeşim Aydın Son
{"title":"EnSCAN: ENsemble Scoring for prioritizing CAusative variaNts across multiplatform GWASs for late-onset alzheimer's disease.","authors":"Onur Erdogan, Cem Iyigun, Yeşim Aydın Son","doi":"10.1186/s13040-025-00436-x","DOIUrl":null,"url":null,"abstract":"<p><p>Late-onset Alzheimer's disease (LOAD) is a progressive and complex neurodegenerative disorder of the aging population. LOAD is characterized by cognitive decline, such as deterioration of memory, loss of intellectual abilities, and other cognitive domains resulting from due to traumatic brain injuries. Alzheimer's Disease (AD) presents a complex genetic etiology that is still unclear, which limits its early or differential diagnosis. The Genome-Wide Association Studies (GWAS) enable the exploration of individual variants' statistical interactions at candidate loci, but univariate analysis overlooks interactions between variants. Machine learning (ML) algorithms can capture hidden, novel, and significant patterns while considering nonlinear interactions between variants to understand the genetic predisposition for complex genetic disorders. When working on different platforms, majority voting cannot be applied because the attributes differ. Hence, a new post-ML ensemble approach was developed to select significant SNVs via multiple genotyping platforms. We proposed the EnSCAN framework using a new algorithm to ensemble selected variants even from different platforms to prioritize candidate causative loci, which consequently helps improve ML results by combining the prior information captured from each dataset. The proposed ensemble algorithm utilizes the chromosomal locations of SNVs by mapping to cytogenetic bands, along with the proximities between pairs and multimodel Random Forest (RF) validations to prioritize SNVs and candidate causative genes for LOAD. The scoring method is scalable and can be applied to any multiplatform genotyping study. We present how the proposed EnSCAN scoring algorithm prioritizes candidate causative variants related to LOAD among three GWAS datasets.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"18 1","pages":"20"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881353/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-025-00436-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Late-onset Alzheimer's disease (LOAD) is a progressive and complex neurodegenerative disorder of the aging population. LOAD is characterized by cognitive decline, such as deterioration of memory, loss of intellectual abilities, and other cognitive domains resulting from due to traumatic brain injuries. Alzheimer's Disease (AD) presents a complex genetic etiology that is still unclear, which limits its early or differential diagnosis. The Genome-Wide Association Studies (GWAS) enable the exploration of individual variants' statistical interactions at candidate loci, but univariate analysis overlooks interactions between variants. Machine learning (ML) algorithms can capture hidden, novel, and significant patterns while considering nonlinear interactions between variants to understand the genetic predisposition for complex genetic disorders. When working on different platforms, majority voting cannot be applied because the attributes differ. Hence, a new post-ML ensemble approach was developed to select significant SNVs via multiple genotyping platforms. We proposed the EnSCAN framework using a new algorithm to ensemble selected variants even from different platforms to prioritize candidate causative loci, which consequently helps improve ML results by combining the prior information captured from each dataset. The proposed ensemble algorithm utilizes the chromosomal locations of SNVs by mapping to cytogenetic bands, along with the proximities between pairs and multimodel Random Forest (RF) validations to prioritize SNVs and candidate causative genes for LOAD. The scoring method is scalable and can be applied to any multiplatform genotyping study. We present how the proposed EnSCAN scoring algorithm prioritizes candidate causative variants related to LOAD among three GWAS datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
期刊最新文献
EnSCAN: ENsemble Scoring for prioritizing CAusative variaNts across multiplatform GWASs for late-onset alzheimer's disease. Analysis of global trends and hotspots of skin microbiome in acne: a bibliometric perspective. Inferring protein from transcript abundances using convolutional neural networks. AI as an accelerator for defining new problems that transcends boundaries. Machine learning models for reinjury risk prediction using cardiopulmonary exercise testing (CPET) data: optimizing athlete recovery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1