Physician clinical decision modification and bias assessment in a randomized controlled trial of AI assistance.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Communications medicine Pub Date : 2025-03-04 DOI:10.1038/s43856-025-00781-2
Ethan Goh, Bryan Bunning, Elaine C Khoong, Robert J Gallo, Arnold Milstein, Damon Centola, Jonathan H Chen
{"title":"Physician clinical decision modification and bias assessment in a randomized controlled trial of AI assistance.","authors":"Ethan Goh, Bryan Bunning, Elaine C Khoong, Robert J Gallo, Arnold Milstein, Damon Centola, Jonathan H Chen","doi":"10.1038/s43856-025-00781-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence assistance in clinical decision making shows promise, but concerns exist about potential exacerbation of demographic biases in healthcare. This study aims to evaluate how physician clinical decisions and biases are influenced by AI assistance in a chest pain triage scenario.</p><p><strong>Methods: </strong>A randomized, pre post-intervention study was conducted with 50 US-licensed physicians who reviewed standardized chest pain video vignettes featuring either a white male or Black female patient. Participants answered clinical questions about triage, risk assessment, and treatment before and after receiving GPT-4 generated recommendations. Clinical decision accuracy was evaluated against evidence-based guidelines.</p><p><strong>Results: </strong>Here we show that physicians are willing to modify their clinical decisions based on GPT-4 assistance, leading to improved accuracy scores from 47% to 65% in the white male patient group and 63% to 80% in the Black female patient group. The accuracy improvement occurs without introducing or exacerbating demographic biases, with both groups showing similar magnitudes of improvement (18%). A post-study survey indicates that 90% of physicians expect AI tools to play a significant role in future clinical decision making.</p><p><strong>Conclusions: </strong>Physician clinical decision making can be augmented by AI assistance while maintaining equitable care across patient demographics. These findings suggest a path forward for AI clinical decision support that improves medical care without amplifying healthcare disparities.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"59"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880198/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-025-00781-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Artificial intelligence assistance in clinical decision making shows promise, but concerns exist about potential exacerbation of demographic biases in healthcare. This study aims to evaluate how physician clinical decisions and biases are influenced by AI assistance in a chest pain triage scenario.

Methods: A randomized, pre post-intervention study was conducted with 50 US-licensed physicians who reviewed standardized chest pain video vignettes featuring either a white male or Black female patient. Participants answered clinical questions about triage, risk assessment, and treatment before and after receiving GPT-4 generated recommendations. Clinical decision accuracy was evaluated against evidence-based guidelines.

Results: Here we show that physicians are willing to modify their clinical decisions based on GPT-4 assistance, leading to improved accuracy scores from 47% to 65% in the white male patient group and 63% to 80% in the Black female patient group. The accuracy improvement occurs without introducing or exacerbating demographic biases, with both groups showing similar magnitudes of improvement (18%). A post-study survey indicates that 90% of physicians expect AI tools to play a significant role in future clinical decision making.

Conclusions: Physician clinical decision making can be augmented by AI assistance while maintaining equitable care across patient demographics. These findings suggest a path forward for AI clinical decision support that improves medical care without amplifying healthcare disparities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Addressing the challenge of antimicrobial resistance. Deep learning-based image analysis in muscle histopathology using photo-realistic synthetic data. Des-γ-carboxy Prothrombin in hepatocellular carcinoma post-operative recurrence risk evaluation. Oral microbiome diversity associates with carotid intima media thickness in middle-aged male subjects. Treatment modalities for patients with Persistent Spinal Pain Syndrome Type II: A systematic review and network meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1