Billy M Mortola, Sarah S Wheeler, Shaoming Huang, Sumiko De La Vega, Jamesina J Scott, Michelle L Meighan, Jake Hartle, John Mayberry, Tara C Thiemann
{"title":"Assessing pyrethroid resistance mechanisms in individual Culex tarsalis (Diptera: Culicidae).","authors":"Billy M Mortola, Sarah S Wheeler, Shaoming Huang, Sumiko De La Vega, Jamesina J Scott, Michelle L Meighan, Jake Hartle, John Mayberry, Tara C Thiemann","doi":"10.1093/jme/tjaf001","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of pyrethroid insecticide resistance in Culex tarsalis Coquillett, a vector for West Nile and St. Louis encephalitis viruses, is a growing concern in Northern California. Common mechanisms of resistance include the target-site mutation, kdr, and increased levels of detoxification enzymes, such as mixed-function oxidases, GSTs, and esterases. The goal of this study was to compare the prevalence of kdr mutations (L1014F and L1014S) and detoxification enzymes between pyrethroid susceptible and resistant Cx. tarsalis individuals. Individual mosquitoes, categorized by resistance status from permethrin bottle bioassays, were prepared for both molecular and enzymatic testing by separating the legs of a mosquito from the remaining body. Legs were used to test for the presence of kdr mutations, while the bodies were used to test for the activity of detoxification enzymes. The number of phenylalanine (F) alleles present at the kdr target-site as well as levels of GST were increased in mosquitoes that survived the bottle bioassay compared to those that were knocked down. Individuals with 2 F alleles and an active GST level greater than or equal to 0.052 µg/ml showed a higher survival rate than either mechanism independently demonstrating resistance to pyrethroids in Cx. tarsalis is likely the result of multiple resistance mechanisms acting collectively. Further work is needed to determine the interplay of multiple resistance mechanisms to achieve phenotype resistance in this mosquito species.</p>","PeriodicalId":94091,"journal":{"name":"Journal of medical entomology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jme/tjaf001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The evolution of pyrethroid insecticide resistance in Culex tarsalis Coquillett, a vector for West Nile and St. Louis encephalitis viruses, is a growing concern in Northern California. Common mechanisms of resistance include the target-site mutation, kdr, and increased levels of detoxification enzymes, such as mixed-function oxidases, GSTs, and esterases. The goal of this study was to compare the prevalence of kdr mutations (L1014F and L1014S) and detoxification enzymes between pyrethroid susceptible and resistant Cx. tarsalis individuals. Individual mosquitoes, categorized by resistance status from permethrin bottle bioassays, were prepared for both molecular and enzymatic testing by separating the legs of a mosquito from the remaining body. Legs were used to test for the presence of kdr mutations, while the bodies were used to test for the activity of detoxification enzymes. The number of phenylalanine (F) alleles present at the kdr target-site as well as levels of GST were increased in mosquitoes that survived the bottle bioassay compared to those that were knocked down. Individuals with 2 F alleles and an active GST level greater than or equal to 0.052 µg/ml showed a higher survival rate than either mechanism independently demonstrating resistance to pyrethroids in Cx. tarsalis is likely the result of multiple resistance mechanisms acting collectively. Further work is needed to determine the interplay of multiple resistance mechanisms to achieve phenotype resistance in this mosquito species.