{"title":"Effects of microplastics on black soil health: A global Meta-analysis","authors":"Zhaojiang Liu, Yanjun Li, Guanghui Xu, Yong Yu","doi":"10.1016/j.jhazmat.2025.137850","DOIUrl":null,"url":null,"abstract":"Microplastics (MPs) have garnered widespread attention as an emerging global contaminant. However, the impacts of MPs on black soil health remain unclear. A meta-analysis of 337 cases from 33 studies was conducted to elucidate the effects of MPs on black soil health. The analysis incorporated 35 indicators, including soil properties, soil enzymes, plant growth, soil animal health, and soil microbial diversity. We investigated the effects of MPs properties, such as particle type, size, concentration, and exposure duration, on soil health. Results showed that MPs led to notable increases in SOM, DOC, available nitrogen by 31.84%, 14.35%, and 12.45%, respectively, while decreased nitrate nitrogen by 12.89%. In addition, MPs exposure enhanced soil urease activity by 11.24% but reduced phosphatase activity by 6.62%. MPs also diminished microbial alpha-diversity, caused oxidative damage in earthworms, and suppressed plant germination rates. Notably, smaller MPs, higher concentrations, longer exposure periods, and conventional MPs have more detrimental effects on soil health. By applying the entropy weight method combined with the analytical hierarchy process, we quantified the overall impact of MPs on black soil health as a 12.09% decrease. Our findings underscore the risks of persistent MPs pollution to black soil health.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"91 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137850","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) have garnered widespread attention as an emerging global contaminant. However, the impacts of MPs on black soil health remain unclear. A meta-analysis of 337 cases from 33 studies was conducted to elucidate the effects of MPs on black soil health. The analysis incorporated 35 indicators, including soil properties, soil enzymes, plant growth, soil animal health, and soil microbial diversity. We investigated the effects of MPs properties, such as particle type, size, concentration, and exposure duration, on soil health. Results showed that MPs led to notable increases in SOM, DOC, available nitrogen by 31.84%, 14.35%, and 12.45%, respectively, while decreased nitrate nitrogen by 12.89%. In addition, MPs exposure enhanced soil urease activity by 11.24% but reduced phosphatase activity by 6.62%. MPs also diminished microbial alpha-diversity, caused oxidative damage in earthworms, and suppressed plant germination rates. Notably, smaller MPs, higher concentrations, longer exposure periods, and conventional MPs have more detrimental effects on soil health. By applying the entropy weight method combined with the analytical hierarchy process, we quantified the overall impact of MPs on black soil health as a 12.09% decrease. Our findings underscore the risks of persistent MPs pollution to black soil health.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.