Mengdi Chen, Yu Zhang, Liyan Hou, Zirui Zhao, Peiyan Tang, Qingquan Sun, Jie Zhao, Qingshan Wang
{"title":"SVHRSP protects against rotenone-induced neurodegeneration in mice by inhibiting TLR4/NF-κB-mediated neuroinflammation via gut microbiota","authors":"Mengdi Chen, Yu Zhang, Liyan Hou, Zirui Zhao, Peiyan Tang, Qingquan Sun, Jie Zhao, Qingshan Wang","doi":"10.1038/s41531-025-00892-6","DOIUrl":null,"url":null,"abstract":"<p>Strong evidence indicates that remodeling gut microbiota may be an effective approach to combat Parkinson’s disease (PD). Scorpion Venom Heat-Resistant Synthesized Peptide (SVHRSP), a synthesized peptide discovered from scorpion venom, displays potent neuroprotection in multiple PD models. However, the potential mechanisms remain unclear. In this study, we demonstrated that SVHRSP effectively attenuated gastrointestinal function impairments and reinstated the microbiota composition in rotenone-induced PD mouse model. Microbiota depletion and FMT verified that the restored gut microbiota was necessary for SVHRSP-mediated neuroprotection against dopaminergic neurodegeneration in rotenone PD mice. Furthermore, SVHRSP gut microbiota-dependently attenuated BBB impairment, microglial activation, and gene expression of pro-inflammatory factors in rotenone-treated mice. Mechanistically, SVHRSP decreased the concentrations of LPS and HMGB1 in both serum and brain tissue, thereby inhibiting the TLR4/NF-κB signaling pathway in the brain of rotenone-treated mice. Together, our findings provided fresh perspectives on the mechanisms underlying SVHRSP-induced neuroprotection in PD.</p>","PeriodicalId":19706,"journal":{"name":"NPJ Parkinson's Disease","volume":"53 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Parkinson's Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41531-025-00892-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Strong evidence indicates that remodeling gut microbiota may be an effective approach to combat Parkinson’s disease (PD). Scorpion Venom Heat-Resistant Synthesized Peptide (SVHRSP), a synthesized peptide discovered from scorpion venom, displays potent neuroprotection in multiple PD models. However, the potential mechanisms remain unclear. In this study, we demonstrated that SVHRSP effectively attenuated gastrointestinal function impairments and reinstated the microbiota composition in rotenone-induced PD mouse model. Microbiota depletion and FMT verified that the restored gut microbiota was necessary for SVHRSP-mediated neuroprotection against dopaminergic neurodegeneration in rotenone PD mice. Furthermore, SVHRSP gut microbiota-dependently attenuated BBB impairment, microglial activation, and gene expression of pro-inflammatory factors in rotenone-treated mice. Mechanistically, SVHRSP decreased the concentrations of LPS and HMGB1 in both serum and brain tissue, thereby inhibiting the TLR4/NF-κB signaling pathway in the brain of rotenone-treated mice. Together, our findings provided fresh perspectives on the mechanisms underlying SVHRSP-induced neuroprotection in PD.
期刊介绍:
npj Parkinson's Disease is a comprehensive open access journal that covers a wide range of research areas related to Parkinson's disease. It publishes original studies in basic science, translational research, and clinical investigations. The journal is dedicated to advancing our understanding of Parkinson's disease by exploring various aspects such as anatomy, etiology, genetics, cellular and molecular physiology, neurophysiology, epidemiology, and therapeutic development. By providing free and immediate access to the scientific and Parkinson's disease community, npj Parkinson's Disease promotes collaboration and knowledge sharing among researchers and healthcare professionals.