Aqueous Zinc-Based Batteries: Active Materials, Device Design, and Future Perspectives

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2025-03-05 DOI:10.1002/aenm.202406139
Yan Ran, Fang Dong, Shuhui Sun, Yong Lei
{"title":"Aqueous Zinc-Based Batteries: Active Materials, Device Design, and Future Perspectives","authors":"Yan Ran, Fang Dong, Shuhui Sun, Yong Lei","doi":"10.1002/aenm.202406139","DOIUrl":null,"url":null,"abstract":"Aqueous zinc-based batteries (AZBs) are emerging as a compelling candidate for large-scale energy storage systems due to their cost-effectiveness, environmental friendliness, and inherent safety. The design and development of high-performance AZBs have thus been the focus of considerable study efforts; yet, certain properties of electrode materials and electrolytes still limit their development. Here, a comprehensive overview and evaluation of the current progress, existing limitations, and potential solutions for electrode materials to achieve long-cycle stability and fast kinetics in AZBs is provided. Detailed analyses of the structural design, electrochemical behavior, and zinc-ion storage mechanisms of various materials are presented. Additionally, key issues and research directions related to the design of zinc anodes and the selection of electrolytes are systematically discussed to guide the future design of AZBs with superior electrochemical performance. Finally, this review provides a comprehensive outlook on the future development of AZBs, highlighting key challenges and opportunities, to foster their continued rapid advancement and broader practical applications in the field.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"41 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202406139","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc-based batteries (AZBs) are emerging as a compelling candidate for large-scale energy storage systems due to their cost-effectiveness, environmental friendliness, and inherent safety. The design and development of high-performance AZBs have thus been the focus of considerable study efforts; yet, certain properties of electrode materials and electrolytes still limit their development. Here, a comprehensive overview and evaluation of the current progress, existing limitations, and potential solutions for electrode materials to achieve long-cycle stability and fast kinetics in AZBs is provided. Detailed analyses of the structural design, electrochemical behavior, and zinc-ion storage mechanisms of various materials are presented. Additionally, key issues and research directions related to the design of zinc anodes and the selection of electrolytes are systematically discussed to guide the future design of AZBs with superior electrochemical performance. Finally, this review provides a comprehensive outlook on the future development of AZBs, highlighting key challenges and opportunities, to foster their continued rapid advancement and broader practical applications in the field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含水锌基电池:活性材料,器件设计和未来展望
由于其成本效益、环境友好性和固有的安全性,水性锌基电池(azb)正成为大规模储能系统的一个令人信服的候选者。因此,高性能azb的设计和开发一直是大量研究工作的重点;然而,电极材料和电解质的某些特性仍然限制了它们的发展。在这里,全面概述和评估了目前的进展,现有的限制,以及电极材料在azb中实现长周期稳定性和快速动力学的潜在解决方案。详细分析了各种材料的结构设计、电化学行为和锌离子储存机理。并对锌阳极设计和电解质选择相关的关键问题和研究方向进行了系统探讨,为今后设计具有优异电化学性能的azb提供指导。最后,本文对azb的未来发展进行了全面展望,强调了主要挑战和机遇,以促进其持续快速发展和更广泛的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Molecularly Integrated Additive Engineering for Rapid Rejuvenation of Spent Electrolyte Roles of Single‐Atoms and Nanoparticles of Nickel‐Based Catalysts for Oxygen‐Involved Dry Reforming of Methane at Low Temperatures Concurrently Achieving 10 mAh cm −2 and Ultralow Binder Content via Active‐Surface‐Guided Fibrillation for Fab‐Scale Dry‐Processed Lithium‐ion Batteries Impact of Processing Environment on Anti‐Solvent Free FAPbI 3 Films and Solar Cells A Long‐Life and Safe Ni‐Rich Cathode Material for Lithium Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1