Ulas Erdil, Mark Khenkin, Marko Remec, Quiterie Emery, Vediappan Sudhakar, Rutger Schlatmann, Antonio Abate, Eugene A. Katz, Carolin Ulbrich
{"title":"Mimicking Outdoor Ion Migration in Perovskite Solar Cells: A Forward Bias, No-Light Accelerated Aging Approach","authors":"Ulas Erdil, Mark Khenkin, Marko Remec, Quiterie Emery, Vediappan Sudhakar, Rutger Schlatmann, Antonio Abate, Eugene A. Katz, Carolin Ulbrich","doi":"10.1021/acsenergylett.5c00376","DOIUrl":null,"url":null,"abstract":"Perovskite solar cells (PSCs) are expected to transform the photovoltaic market; however, their unproven operational stability requires urgent attention, particularly accelerated aging tests. Currently, illumination is the primary stressor in such tests. In this work, we present an accelerated aging procedure consisting of prolonged forward biasing followed by a dark storage (postbias rest) phase, conducted entirely in the dark. During aging under forward bias, ion migration led to impeded charge transport, macroscopic defect growth, and an adverse response of the cells to short light soaking, all of which recovered in the postbias rest phase, yet resulted in increased recombination due to redistribution of ions. We found that outdoor operation of PSCs in Berlin, Germany, over a 20-month period exhibited similar dynamics, with periods of higher temperature and irradiance (spring-summer) aligning with the forward bias phase and cooler, dimmer periods (fall–winter) aligning with the postbias rest phase. This paves the way for accelerated aging tests that can mimic ion migration-induced degradation outdoors without requiring an illumination source.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"18 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00376","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite solar cells (PSCs) are expected to transform the photovoltaic market; however, their unproven operational stability requires urgent attention, particularly accelerated aging tests. Currently, illumination is the primary stressor in such tests. In this work, we present an accelerated aging procedure consisting of prolonged forward biasing followed by a dark storage (postbias rest) phase, conducted entirely in the dark. During aging under forward bias, ion migration led to impeded charge transport, macroscopic defect growth, and an adverse response of the cells to short light soaking, all of which recovered in the postbias rest phase, yet resulted in increased recombination due to redistribution of ions. We found that outdoor operation of PSCs in Berlin, Germany, over a 20-month period exhibited similar dynamics, with periods of higher temperature and irradiance (spring-summer) aligning with the forward bias phase and cooler, dimmer periods (fall–winter) aligning with the postbias rest phase. This paves the way for accelerated aging tests that can mimic ion migration-induced degradation outdoors without requiring an illumination source.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.