Nanoporous synthetic metal: A nickel MOF with an amino-functionalized macrocyclic ligand

IF 19.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chem Pub Date : 2025-08-14 DOI:10.1016/j.chempr.2025.102487
Hoai T.B. Pham , Xiaoyu Fang , Ji Yong Choi , Shaofeng Huang , Jihye Park
{"title":"Nanoporous synthetic metal: A nickel MOF with an amino-functionalized macrocyclic ligand","authors":"Hoai T.B. Pham ,&nbsp;Xiaoyu Fang ,&nbsp;Ji Yong Choi ,&nbsp;Shaofeng Huang ,&nbsp;Jihye Park","doi":"10.1016/j.chempr.2025.102487","DOIUrl":null,"url":null,"abstract":"<div><div><span><span>Integrating metallic charge transport with high porosity in a single material can unlock significant advancements in energy storage, electrocatalysis<span>, and chemiresistive sensing. However, these properties rarely coexist due to the conflicting need for a high charge carrier density and the presence of voids. Herein, we report a new macrocyclic ligand, 2,3,8,9,14,15-hexaaminotribenzocyclyne (HATC) and its electrically conductive metal-organic framework (EC-MOF), coordinated with nickel nodes to render Ni-HATC as </span></span>nanoporous<span> synthetic metal. HATC provides intrinsic pockets for extra porosity, while its six amino and three alkyne<span> groups significantly enhance electron density for realizing metallic behaviors in Ni-HATC. Consequently, Ni-HATC achieves exceptional conductivities of 20 S/cm in thin films<span> and 3 S/cm in bulk, with a high surface area of 1,000 m</span></span></span></span><sup>2</sup>/g. Our findings showcase a unique material combining metallic charge transport and high porosity, opening new possibilities for future synthetically nanoporous metallic materials.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":"11 8","pages":"Article 102487"},"PeriodicalIF":19.6000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929425000774","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating metallic charge transport with high porosity in a single material can unlock significant advancements in energy storage, electrocatalysis, and chemiresistive sensing. However, these properties rarely coexist due to the conflicting need for a high charge carrier density and the presence of voids. Herein, we report a new macrocyclic ligand, 2,3,8,9,14,15-hexaaminotribenzocyclyne (HATC) and its electrically conductive metal-organic framework (EC-MOF), coordinated with nickel nodes to render Ni-HATC as nanoporous synthetic metal. HATC provides intrinsic pockets for extra porosity, while its six amino and three alkyne groups significantly enhance electron density for realizing metallic behaviors in Ni-HATC. Consequently, Ni-HATC achieves exceptional conductivities of 20 S/cm in thin films and 3 S/cm in bulk, with a high surface area of 1,000 m2/g. Our findings showcase a unique material combining metallic charge transport and high porosity, opening new possibilities for future synthetically nanoporous metallic materials.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米多孔合成金属:含氨基功能化大环配体的镍MOF
将金属电荷输运与高孔隙率集成在单一材料中可以在能量存储,电催化和化学电阻传感方面取得重大进展。然而,由于需要高载流子密度和存在空隙,这些性质很少共存。本文报道了一种新的大环配体,2,3,8,9,14,15-六胺三苯并环(HATC)及其导电金属-有机框架(EC-MOF),与镍节点配合,使Ni-HATC成为纳米多孔合成金属。HATC提供了额外孔隙的固有口袋,而其六个氨基和三个炔基显著提高了电子密度,从而实现了Ni-HATC中的金属行为。因此,Ni-HATC在薄膜中实现了20 S/cm的卓越导电性,在块状中实现了3 S/cm的导电性,具有1,000 m2/g的高表面积。我们的发现展示了一种结合金属电荷输运和高孔隙率的独特材料,为未来合成纳米多孔金属材料开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
期刊最新文献
A protease repurposed for thiotemplated amide synthesis Long-wavelength photocatalysis enabled by an in-situ-assembled manganese platform In situ cryogenic X-ray photoelectron spectroscopy unveils metastable components of the solid electrolyte interphase in Li-ion batteries Synthesis of single-crystalline carbon nanothreads from 1-naphthoic acid with high anisotropic thermal conductivity In this issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1