Probiotic Delivery for Editing of the Gut Microbiota to Mitigate Colitis and Maintain Hepatic Homeostasis Via Gut–Liver Axis

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-03-06 DOI:10.1021/acsnano.5c00325
Junwei Deng, Yaoyu Hu, Pengfei Zhu, Yi Yu, Qian Chen, Haitao Wu, Zhengbao Zha, Hua Wang, Yan Ma
{"title":"Probiotic Delivery for Editing of the Gut Microbiota to Mitigate Colitis and Maintain Hepatic Homeostasis Via Gut–Liver Axis","authors":"Junwei Deng, Yaoyu Hu, Pengfei Zhu, Yi Yu, Qian Chen, Haitao Wu, Zhengbao Zha, Hua Wang, Yan Ma","doi":"10.1021/acsnano.5c00325","DOIUrl":null,"url":null,"abstract":"Inflammatory bowel disease (IBD) compromises the intestinal barrier and disrupts gut microbiota, impacting liver function via the gut–liver axis, which in turn influences the intestinal microbiota through lipid metabolites exacerbating IBD. This study introduced a probiotic-based treatment using <i>Lactobacillus acidophilus</i> encapsulated in tungsten ion-loaded mesoporous polydopamine (LA@WMPDA) to ameliorate colitis and balance enterohepatic homeostasis. After oral administration, the encapsulation could protect <i>Lactobacillus acidophilus</i>, scavenge reactive oxygen/nitrogen species, and the released tungsten ions would inhibit abnormal <i>Enterobacteriaceae</i> growth during colitis, consequently restoring the intestinal barrier and regulating the gut microbiota. Nontargeted metabolomics and transcriptomics analyses showed increased short-chain fatty acids and indole derivatives, and decreased hepatic lipid metabolism. Pathways associated with immune response, cell migration and death, and response to bacterium showed significant down-regulation in the colon and liver transcriptome analysis. Thus, this study provided a pioneered paradigm for IBD treatment and highlighted the regulation of liver-related metabolic functions via the gut–liver axis.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"2 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00325","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inflammatory bowel disease (IBD) compromises the intestinal barrier and disrupts gut microbiota, impacting liver function via the gut–liver axis, which in turn influences the intestinal microbiota through lipid metabolites exacerbating IBD. This study introduced a probiotic-based treatment using Lactobacillus acidophilus encapsulated in tungsten ion-loaded mesoporous polydopamine (LA@WMPDA) to ameliorate colitis and balance enterohepatic homeostasis. After oral administration, the encapsulation could protect Lactobacillus acidophilus, scavenge reactive oxygen/nitrogen species, and the released tungsten ions would inhibit abnormal Enterobacteriaceae growth during colitis, consequently restoring the intestinal barrier and regulating the gut microbiota. Nontargeted metabolomics and transcriptomics analyses showed increased short-chain fatty acids and indole derivatives, and decreased hepatic lipid metabolism. Pathways associated with immune response, cell migration and death, and response to bacterium showed significant down-regulation in the colon and liver transcriptome analysis. Thus, this study provided a pioneered paradigm for IBD treatment and highlighted the regulation of liver-related metabolic functions via the gut–liver axis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Advancing Efficiency in Solar-Driven Interfacial Evaporation: Strategies and Applications Computational Discovery of Design Principles for Plasmon-Driven Bond Activation on Alloy Antenna Reactors Time-Resolved Diamond Magnetic Microscopy of Superparamagnetic Iron-Oxide Nanoparticles Metal Ion Cross-Linked Cellulose/Lignin Nanocomposite Films: A Pathbreaking Approach toward High-Performance Sustainable Biomaterials Tuning the Near-Infrared J-Aggregate of a Multicationic Photosensitizer through Molecular Coassembly for Symbiotic Photothermal Therapy and Chemotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1