Vitamin A-Integrated Cinnamaldehyde Nanoemulsion: A Nanotherapeutic Approach To Counteract Liver Fibrosis via Gut–Liver Axis Modulation

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-03-06 DOI:10.1021/acsnano.5c00136
Xia Niu, Ge Chang, Ning Xu, Rui Li, Bingyu Niu, Rui Mao, Shan Wang, Guiling Li, Jiandong Jiang, Lulu Wang
{"title":"Vitamin A-Integrated Cinnamaldehyde Nanoemulsion: A Nanotherapeutic Approach To Counteract Liver Fibrosis via Gut–Liver Axis Modulation","authors":"Xia Niu, Ge Chang, Ning Xu, Rui Li, Bingyu Niu, Rui Mao, Shan Wang, Guiling Li, Jiandong Jiang, Lulu Wang","doi":"10.1021/acsnano.5c00136","DOIUrl":null,"url":null,"abstract":"Liver fibrosis, a complex process resulting from most chronic liver diseases, remains devoid of effective treatments. An increasing body of evidence links liver fibrosis to the “gut–liver axis”, with disruptions in the gut microbiota–host balance emerging as a critical contributor to its progression. Cinnamaldehyde (Cin), a natural compound with antioxidant, anti-inflammatory, and anticytotoxic properties, has shown potential in counteracting hepatic stellate cell (HSC) activation. Additionally, Cin has been shown to promote probiotics in the intestine, thereby restoring a healthy microbial community. These characteristics position Cin as a promising candidate for liver fibrosis treatment through modulation of the gut–liver axis. In this study, a Vitamin A (Va)-formulated Cin Nanoemulsion (Va-Cin@NM) was developed to enhance the physicochemical stability of Cin while preserving intestinal homeostasis and facilitating targeted liver deposition. In bile duct ligation (BDL)-induced liver fibrosis in rats, Va-Cin@NM intervention significantly reduced bile duct-like structure proliferation and collagen deposition in the liver. These effects are likely attributed to the restoration of gut microbiota, increased short-chain fatty acid (SCFA) concentrations, and improved intestinal integrity. Moreover, Va-Cin@NM treatment suppressed harmful bacterial populations in the liver, thus mitigating immune injury and inflammatory cell recruitment. Consequently, oxidative stress and HSC activation were attenuated. Overall, Va-Cin@NM demonstrates significant potential as a nanotherapeutic approach for liver fibrosis by modulating the gut–liver axis.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"212 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00136","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Liver fibrosis, a complex process resulting from most chronic liver diseases, remains devoid of effective treatments. An increasing body of evidence links liver fibrosis to the “gut–liver axis”, with disruptions in the gut microbiota–host balance emerging as a critical contributor to its progression. Cinnamaldehyde (Cin), a natural compound with antioxidant, anti-inflammatory, and anticytotoxic properties, has shown potential in counteracting hepatic stellate cell (HSC) activation. Additionally, Cin has been shown to promote probiotics in the intestine, thereby restoring a healthy microbial community. These characteristics position Cin as a promising candidate for liver fibrosis treatment through modulation of the gut–liver axis. In this study, a Vitamin A (Va)-formulated Cin Nanoemulsion (Va-Cin@NM) was developed to enhance the physicochemical stability of Cin while preserving intestinal homeostasis and facilitating targeted liver deposition. In bile duct ligation (BDL)-induced liver fibrosis in rats, Va-Cin@NM intervention significantly reduced bile duct-like structure proliferation and collagen deposition in the liver. These effects are likely attributed to the restoration of gut microbiota, increased short-chain fatty acid (SCFA) concentrations, and improved intestinal integrity. Moreover, Va-Cin@NM treatment suppressed harmful bacterial populations in the liver, thus mitigating immune injury and inflammatory cell recruitment. Consequently, oxidative stress and HSC activation were attenuated. Overall, Va-Cin@NM demonstrates significant potential as a nanotherapeutic approach for liver fibrosis by modulating the gut–liver axis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Advancing Efficiency in Solar-Driven Interfacial Evaporation: Strategies and Applications Computational Discovery of Design Principles for Plasmon-Driven Bond Activation on Alloy Antenna Reactors Time-Resolved Diamond Magnetic Microscopy of Superparamagnetic Iron-Oxide Nanoparticles Metal Ion Cross-Linked Cellulose/Lignin Nanocomposite Films: A Pathbreaking Approach toward High-Performance Sustainable Biomaterials Tuning the Near-Infrared J-Aggregate of a Multicationic Photosensitizer through Molecular Coassembly for Symbiotic Photothermal Therapy and Chemotherapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1