{"title":"Organic–Inorganic Modification of PVDF Membranes by PDA@ZnO and PDA@MgO Nanoparticles for Enhanced Performance of Organic Dye Wastewater Treatment","authors":"Yiming Wu, Jing Yang, Ruifeng Zhang, Hongji Li, Ruihua Mu, Yamei Zhao","doi":"10.1021/acs.langmuir.4c04728","DOIUrl":null,"url":null,"abstract":"Polyvinylidene fluoride (PVDF) membranes represent a potential technology for the in-depth treatment of organic dye-containing wastewater. Nevertheless, the intractable membrane fouling and the limited versatility have significantly constrained its applications. Herein, through the nonsolvent-induced phase inversion method, we have successfully fabricated the PDA@MgO/PVDF and PDA@ZnO/PVDF membranes, which are modified by the synergistic action of MgO or ZnO nanoparticles with polydopamine (PDA), respectively. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as the analyses of pore structure, contact angle, and surface free energy, were utilized to characterize the hybrid membranes. The results demonstrate that the modification of PDA@MgO and PDA@ZnO can enhance the hydrophilicity, pure flux, dye rejection, and pollution resistance of PVDF membranes. The enhanced hydrophilicity of the modified membranes results from the increase in surface free energy and its polar component term. Comparatively, the PDA@ZnO/PVDF membrane exhibits a smaller contact angle (69°) and a higher pure water flux (378.63 L/m<sup>2</sup>·h·bar), whereas the PDA@MgO/PVDF membrane possesses greater mechanical strength and better antifouling performance. The PDA@MgO/PVDF membrane can achieve a rejection rate of 94.6% for disperse deep blue 79, and the flux recovery rate can reach approximately 82%. This research offers novel insights into the application of PVDF membranes for the treatment of organic dye-containing wastewater.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"53 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04728","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polyvinylidene fluoride (PVDF) membranes represent a potential technology for the in-depth treatment of organic dye-containing wastewater. Nevertheless, the intractable membrane fouling and the limited versatility have significantly constrained its applications. Herein, through the nonsolvent-induced phase inversion method, we have successfully fabricated the PDA@MgO/PVDF and PDA@ZnO/PVDF membranes, which are modified by the synergistic action of MgO or ZnO nanoparticles with polydopamine (PDA), respectively. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as the analyses of pore structure, contact angle, and surface free energy, were utilized to characterize the hybrid membranes. The results demonstrate that the modification of PDA@MgO and PDA@ZnO can enhance the hydrophilicity, pure flux, dye rejection, and pollution resistance of PVDF membranes. The enhanced hydrophilicity of the modified membranes results from the increase in surface free energy and its polar component term. Comparatively, the PDA@ZnO/PVDF membrane exhibits a smaller contact angle (69°) and a higher pure water flux (378.63 L/m2·h·bar), whereas the PDA@MgO/PVDF membrane possesses greater mechanical strength and better antifouling performance. The PDA@MgO/PVDF membrane can achieve a rejection rate of 94.6% for disperse deep blue 79, and the flux recovery rate can reach approximately 82%. This research offers novel insights into the application of PVDF membranes for the treatment of organic dye-containing wastewater.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).