FlorID – A nationwide identification service for plants from photos and habitat information

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2025-02-26 DOI:10.1016/j.envsoft.2025.106402
Philipp Brun , Lucienne de Witte , Manuel Richard Popp , Damaris Zurell , Dirk Nikolaus Karger , Patrice Descombes , Riccardo de Lutio , Jan Dirk Wegner , Christophe Bornand , Stefan Eggenberg , Tasko Olevski , Niklaus E. Zimmermann
{"title":"FlorID – A nationwide identification service for plants from photos and habitat information","authors":"Philipp Brun ,&nbsp;Lucienne de Witte ,&nbsp;Manuel Richard Popp ,&nbsp;Damaris Zurell ,&nbsp;Dirk Nikolaus Karger ,&nbsp;Patrice Descombes ,&nbsp;Riccardo de Lutio ,&nbsp;Jan Dirk Wegner ,&nbsp;Christophe Bornand ,&nbsp;Stefan Eggenberg ,&nbsp;Tasko Olevski ,&nbsp;Niklaus E. Zimmermann","doi":"10.1016/j.envsoft.2025.106402","DOIUrl":null,"url":null,"abstract":"<div><div>Citizen science has become key to biodiversity monitoring but critically depends on accurate quality control that is scalable and tailored to the focal region. We developed FlorID, a free-to-use identification service for all native and many non-native plants of Switzerland. FlorID can identify &gt;3000 species, using vision transformers trained on 1.5M photos, and ecological predictions from multilayer perceptrons, trained on 6.7M occurrence observations and 20 high-resolution environmental variables. Embedded in a free-to-use application programming interface, FlorID can be accessed directly, via webservice, and via FlorApp smartphone application. If multiple images and spatiotemporal location are available, FlorID correctly identifies 93% of field observations and has a top-5 accuracy of 99%. Ecological predictions boost identification success especially for native species with distinct distributions. By evaluating information on appearance and fine-grained ecology, FlorID is a blueprint for similar solutions targeting different taxa or regions, and a basis for developments like automated community inventories.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"188 ","pages":"Article 106402"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000866","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Citizen science has become key to biodiversity monitoring but critically depends on accurate quality control that is scalable and tailored to the focal region. We developed FlorID, a free-to-use identification service for all native and many non-native plants of Switzerland. FlorID can identify >3000 species, using vision transformers trained on 1.5M photos, and ecological predictions from multilayer perceptrons, trained on 6.7M occurrence observations and 20 high-resolution environmental variables. Embedded in a free-to-use application programming interface, FlorID can be accessed directly, via webservice, and via FlorApp smartphone application. If multiple images and spatiotemporal location are available, FlorID correctly identifies 93% of field observations and has a top-5 accuracy of 99%. Ecological predictions boost identification success especially for native species with distinct distributions. By evaluating information on appearance and fine-grained ecology, FlorID is a blueprint for similar solutions targeting different taxa or regions, and a basis for developments like automated community inventories.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
ZHPO-LightXBoost an integrated prediction model based on small samples for pesticide residues in crops A machine learning model integrating spatiotemporal attention and residual learning for predicting periodic air pollutant concentrations AquaNutriOpt II: A multi-period bi-objective nutrient optimization python tool for controlling harmful algal blooms — A case study of Lake Okeechobee WigglyRivers: A tool to characterize the multiscale nature of meandering channels On the future of hydroecological models of everywhere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1