H. Wan , P.J. Liu , F. Qin , X.G. Wei , G.Q. He , W.Q. Li
{"title":"Enhancing electrospray cooling via electrode ring: An experimental and numerical study","authors":"H. Wan , P.J. Liu , F. Qin , X.G. Wei , G.Q. He , W.Q. Li","doi":"10.1016/j.ijthermalsci.2025.109839","DOIUrl":null,"url":null,"abstract":"<div><div>Electrospray cooling is a promising technique for its high heat transfer efficiency and extreme low coolant and energy consumption. However, few articles focused on the enhancement of electrospray cooling using auxiliary electrodes. Moreover, there is no article referring to the numerical model for electrospray cooling with auxiliary electrode. Herein, we develop a numerical model and set up an experimental system to explore the influence of electrode ring on electrospray cooling. Results demonstrate that the potential difference between the electrode ring voltage and the capillary voltage determines the electrospray mode, and the electrode ring can enlarge the atomization angle and increase the velocity of the atomized droplets, thereby intensifying electrospray heat transfer coefficient. When the electrode ring is grounded, the capillary-ring electric potential rises, causing both increases in charge density and average velocity of cone jet. When the total voltage is the same in the cone-jet mode, the grounding electrode ring can reduce the wall temperature by 7.5 %. In the cone-jet and multi-jet modes, the larger the total voltage of capillary tube and electrode ring, the better the cooling effect. Increasing the inner diameter of the electrode ring from 2 mm to 4 mm and 6 mm can respectively improve heat transfer coefficient by 49.3 % and 116.7 %.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"214 ","pages":"Article 109839"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925001620","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrospray cooling is a promising technique for its high heat transfer efficiency and extreme low coolant and energy consumption. However, few articles focused on the enhancement of electrospray cooling using auxiliary electrodes. Moreover, there is no article referring to the numerical model for electrospray cooling with auxiliary electrode. Herein, we develop a numerical model and set up an experimental system to explore the influence of electrode ring on electrospray cooling. Results demonstrate that the potential difference between the electrode ring voltage and the capillary voltage determines the electrospray mode, and the electrode ring can enlarge the atomization angle and increase the velocity of the atomized droplets, thereby intensifying electrospray heat transfer coefficient. When the electrode ring is grounded, the capillary-ring electric potential rises, causing both increases in charge density and average velocity of cone jet. When the total voltage is the same in the cone-jet mode, the grounding electrode ring can reduce the wall temperature by 7.5 %. In the cone-jet and multi-jet modes, the larger the total voltage of capillary tube and electrode ring, the better the cooling effect. Increasing the inner diameter of the electrode ring from 2 mm to 4 mm and 6 mm can respectively improve heat transfer coefficient by 49.3 % and 116.7 %.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.